2024-05-07 13:14:54 +08:00
|
|
|
import os
|
2024-02-09 15:21:33 +08:00
|
|
|
from typing import Optional
|
2024-01-02 23:42:00 +08:00
|
|
|
|
2024-05-07 13:14:54 +08:00
|
|
|
from flashrank import Ranker, RerankRequest
|
|
|
|
from flask import current_app
|
|
|
|
|
2024-02-06 13:21:13 +08:00
|
|
|
from core.model_manager import ModelInstance
|
2024-02-23 14:16:44 +08:00
|
|
|
from core.rag.models.document import Document
|
2024-02-06 13:21:13 +08:00
|
|
|
|
2024-01-02 23:42:00 +08:00
|
|
|
|
|
|
|
class RerankRunner:
|
|
|
|
def __init__(self, rerank_model_instance: ModelInstance) -> None:
|
|
|
|
self.rerank_model_instance = rerank_model_instance
|
|
|
|
|
2024-02-09 15:21:33 +08:00
|
|
|
def run(self, query: str, documents: list[Document], score_threshold: Optional[float] = None,
|
|
|
|
top_n: Optional[int] = None, user: Optional[str] = None) -> list[Document]:
|
2024-01-02 23:42:00 +08:00
|
|
|
"""
|
|
|
|
Run rerank model
|
|
|
|
:param query: search query
|
|
|
|
:param documents: documents for reranking
|
|
|
|
:param score_threshold: score threshold
|
|
|
|
:param top_n: top n
|
|
|
|
:param user: unique user id if needed
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
docs = []
|
|
|
|
doc_id = []
|
|
|
|
unique_documents = []
|
|
|
|
for document in documents:
|
|
|
|
if document.metadata['doc_id'] not in doc_id:
|
|
|
|
doc_id.append(document.metadata['doc_id'])
|
|
|
|
docs.append(document.page_content)
|
|
|
|
unique_documents.append(document)
|
|
|
|
|
|
|
|
documents = unique_documents
|
2024-05-07 13:14:54 +08:00
|
|
|
passages = []
|
|
|
|
i = 1
|
|
|
|
for document in documents:
|
|
|
|
passage = {
|
|
|
|
'id': i,
|
|
|
|
'text': document.page_content,
|
|
|
|
'meta': document.metadata
|
|
|
|
}
|
|
|
|
passages.append(passage)
|
|
|
|
i += 1
|
|
|
|
folder = current_app.config.get('STORAGE_LOCAL_PATH')
|
|
|
|
if not os.path.isabs(folder):
|
|
|
|
folder = os.path.join(current_app.root_path, folder)
|
|
|
|
ranker = Ranker(model_name="ms-marco-MiniLM-L-12-v2", cache_dir=folder)
|
|
|
|
rerank_request = RerankRequest(query=query, passages=passages)
|
|
|
|
results = ranker.rerank(rerank_request)
|
|
|
|
print(results)
|
2024-01-02 23:42:00 +08:00
|
|
|
|
|
|
|
rerank_result = self.rerank_model_instance.invoke_rerank(
|
|
|
|
query=query,
|
|
|
|
docs=docs,
|
|
|
|
score_threshold=score_threshold,
|
|
|
|
top_n=top_n,
|
|
|
|
user=user
|
|
|
|
)
|
|
|
|
|
|
|
|
rerank_documents = []
|
|
|
|
|
|
|
|
for result in rerank_result.docs:
|
|
|
|
# format document
|
|
|
|
rerank_document = Document(
|
|
|
|
page_content=result.text,
|
|
|
|
metadata={
|
|
|
|
"doc_id": documents[result.index].metadata['doc_id'],
|
|
|
|
"doc_hash": documents[result.index].metadata['doc_hash'],
|
|
|
|
"document_id": documents[result.index].metadata['document_id'],
|
|
|
|
"dataset_id": documents[result.index].metadata['dataset_id'],
|
|
|
|
'score': result.score
|
|
|
|
}
|
|
|
|
)
|
|
|
|
rerank_documents.append(rerank_document)
|
|
|
|
|
|
|
|
return rerank_documents
|