feat: support tencent vdb
This commit is contained in:
parent
38dd58e796
commit
324a0baf22
170
api/.env
Normal file
170
api/.env
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
# Server Edition
|
||||||
|
EDITION=SELF_HOSTED
|
||||||
|
|
||||||
|
# Your App secret key will be used for securely signing the session cookie
|
||||||
|
# Make sure you are changing this key for your deployment with a strong key.
|
||||||
|
# You can generate a strong key using `openssl rand -base64 42`.
|
||||||
|
# Alternatively you can set it with `SECRET_KEY` environment variable.
|
||||||
|
SECRET_KEY=
|
||||||
|
|
||||||
|
# Console API base URL
|
||||||
|
CONSOLE_API_URL=http://127.0.0.1:5001
|
||||||
|
CONSOLE_WEB_URL=http://127.0.0.1:3000
|
||||||
|
|
||||||
|
# Service API base URL
|
||||||
|
SERVICE_API_URL=http://127.0.0.1:5001
|
||||||
|
|
||||||
|
# Web APP base URL
|
||||||
|
APP_WEB_URL=http://127.0.0.1:3000
|
||||||
|
|
||||||
|
# Files URL
|
||||||
|
FILES_URL=http://127.0.0.1:5001
|
||||||
|
|
||||||
|
# celery configuration
|
||||||
|
CELERY_BROKER_URL=redis://:difyai123456@localhost:6379/1
|
||||||
|
|
||||||
|
# redis configuration
|
||||||
|
REDIS_HOST=localhost
|
||||||
|
REDIS_PORT=6379
|
||||||
|
REDIS_USERNAME=
|
||||||
|
REDIS_PASSWORD=difyai123456
|
||||||
|
REDIS_DB=0
|
||||||
|
|
||||||
|
# PostgreSQL database configuration
|
||||||
|
DB_USERNAME=postgres
|
||||||
|
DB_PASSWORD=difyai123456
|
||||||
|
DB_HOST=localhost
|
||||||
|
DB_PORT=5432
|
||||||
|
DB_DATABASE=dify
|
||||||
|
|
||||||
|
# Storage configuration
|
||||||
|
# use for store upload files, private keys...
|
||||||
|
# storage type: local, s3, azure-blob
|
||||||
|
STORAGE_TYPE=local
|
||||||
|
STORAGE_LOCAL_PATH=storage
|
||||||
|
S3_ENDPOINT=https://your-bucket-name.storage.s3.clooudflare.com
|
||||||
|
S3_BUCKET_NAME=your-bucket-name
|
||||||
|
S3_ACCESS_KEY=your-access-key
|
||||||
|
S3_SECRET_KEY=your-secret-key
|
||||||
|
S3_REGION=your-region
|
||||||
|
# Azure Blob Storage configuration
|
||||||
|
AZURE_BLOB_ACCOUNT_NAME=your-account-name
|
||||||
|
AZURE_BLOB_ACCOUNT_KEY=your-account-key
|
||||||
|
AZURE_BLOB_CONTAINER_NAME=yout-container-name
|
||||||
|
AZURE_BLOB_ACCOUNT_URL=https://<your_account_name>.blob.core.windows.net
|
||||||
|
|
||||||
|
# CORS configuration
|
||||||
|
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
|
||||||
|
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
|
||||||
|
|
||||||
|
# Vector database configuration, support: weaviate, qdrant, milvus, relyt
|
||||||
|
VECTOR_STORE=tencent
|
||||||
|
|
||||||
|
TENCENT_URL=http://10.6.1.224
|
||||||
|
TENCENT_API_KEY=nTZEVu0UeShVmMXkMywZQpMLC3BCERM7nLOPH2Xf
|
||||||
|
TENCENT_TIMEOUT=30
|
||||||
|
TENCENT_USERNAME=root
|
||||||
|
TENCENT_DATABASE=dify
|
||||||
|
TENCENT_SHARD=1
|
||||||
|
TENCENT_REPLICAS=2
|
||||||
|
|
||||||
|
# Weaviate configuration
|
||||||
|
WEAVIATE_ENDPOINT=http://localhost:8080
|
||||||
|
WEAVIATE_API_KEY=WVF5YThaHlkYwhGUSmCRgsX3tD5ngdN8pkih
|
||||||
|
WEAVIATE_GRPC_ENABLED=false
|
||||||
|
WEAVIATE_BATCH_SIZE=100
|
||||||
|
|
||||||
|
# Qdrant configuration, use `http://localhost:6333` for local mode or `https://your-qdrant-cluster-url.qdrant.io` for remote mode
|
||||||
|
QDRANT_URL=http://localhost:6333
|
||||||
|
QDRANT_API_KEY=difyai123456
|
||||||
|
QDRANT_CLIENT_TIMEOUT=20
|
||||||
|
|
||||||
|
# Milvus configuration
|
||||||
|
MILVUS_HOST=127.0.0.1
|
||||||
|
MILVUS_PORT=19530
|
||||||
|
MILVUS_USER=root
|
||||||
|
MILVUS_PASSWORD=Milvus
|
||||||
|
MILVUS_SECURE=false
|
||||||
|
|
||||||
|
# Relyt configuration
|
||||||
|
RELYT_HOST=127.0.0.1
|
||||||
|
RELYT_PORT=5432
|
||||||
|
RELYT_USER=postgres
|
||||||
|
RELYT_PASSWORD=postgres
|
||||||
|
RELYT_DATABASE=postgres
|
||||||
|
|
||||||
|
# Upload configuration
|
||||||
|
UPLOAD_FILE_SIZE_LIMIT=15
|
||||||
|
UPLOAD_FILE_BATCH_LIMIT=5
|
||||||
|
UPLOAD_IMAGE_FILE_SIZE_LIMIT=10
|
||||||
|
|
||||||
|
# Model Configuration
|
||||||
|
MULTIMODAL_SEND_IMAGE_FORMAT=base64
|
||||||
|
|
||||||
|
# Mail configuration, support: resend, smtp
|
||||||
|
MAIL_TYPE=
|
||||||
|
MAIL_DEFAULT_SEND_FROM=no-reply <no-reply@dify.ai>
|
||||||
|
RESEND_API_KEY=
|
||||||
|
RESEND_API_URL=https://api.resend.com
|
||||||
|
# smtp configuration
|
||||||
|
SMTP_SERVER=smtp.gmail.com
|
||||||
|
SMTP_PORT=587
|
||||||
|
SMTP_USERNAME=123
|
||||||
|
SMTP_PASSWORD=abc
|
||||||
|
SMTP_USE_TLS=false
|
||||||
|
|
||||||
|
# Sentry configuration
|
||||||
|
SENTRY_DSN=
|
||||||
|
|
||||||
|
# DEBUG
|
||||||
|
DEBUG=false
|
||||||
|
SQLALCHEMY_ECHO=false
|
||||||
|
|
||||||
|
# Notion import configuration, support public and internal
|
||||||
|
NOTION_INTEGRATION_TYPE=public
|
||||||
|
NOTION_CLIENT_SECRET=you-client-secret
|
||||||
|
NOTION_CLIENT_ID=you-client-id
|
||||||
|
NOTION_INTERNAL_SECRET=you-internal-secret
|
||||||
|
|
||||||
|
# Hosted Model Credentials
|
||||||
|
HOSTED_OPENAI_API_KEY=
|
||||||
|
HOSTED_OPENAI_API_BASE=
|
||||||
|
HOSTED_OPENAI_API_ORGANIZATION=
|
||||||
|
HOSTED_OPENAI_TRIAL_ENABLED=false
|
||||||
|
HOSTED_OPENAI_QUOTA_LIMIT=200
|
||||||
|
HOSTED_OPENAI_PAID_ENABLED=false
|
||||||
|
|
||||||
|
HOSTED_AZURE_OPENAI_ENABLED=false
|
||||||
|
HOSTED_AZURE_OPENAI_API_KEY=
|
||||||
|
HOSTED_AZURE_OPENAI_API_BASE=
|
||||||
|
HOSTED_AZURE_OPENAI_QUOTA_LIMIT=200
|
||||||
|
|
||||||
|
HOSTED_ANTHROPIC_API_BASE=
|
||||||
|
HOSTED_ANTHROPIC_API_KEY=
|
||||||
|
HOSTED_ANTHROPIC_TRIAL_ENABLED=false
|
||||||
|
HOSTED_ANTHROPIC_QUOTA_LIMIT=600000
|
||||||
|
HOSTED_ANTHROPIC_PAID_ENABLED=false
|
||||||
|
|
||||||
|
ETL_TYPE=dify
|
||||||
|
UNSTRUCTURED_API_URL=
|
||||||
|
|
||||||
|
SSRF_PROXY_HTTP_URL=
|
||||||
|
SSRF_PROXY_HTTPS_URL=
|
||||||
|
|
||||||
|
BATCH_UPLOAD_LIMIT=10
|
||||||
|
KEYWORD_DATA_SOURCE_TYPE=database
|
||||||
|
|
||||||
|
# CODE EXECUTION CONFIGURATION
|
||||||
|
CODE_EXECUTION_ENDPOINT=http://127.0.0.1:8194
|
||||||
|
CODE_EXECUTION_API_KEY=dify-sandbox
|
||||||
|
CODE_MAX_NUMBER=9223372036854775807
|
||||||
|
CODE_MIN_NUMBER=-9223372036854775808
|
||||||
|
CODE_MAX_STRING_LENGTH=80000
|
||||||
|
TEMPLATE_TRANSFORM_MAX_LENGTH=80000
|
||||||
|
CODE_MAX_STRING_ARRAY_LENGTH=30
|
||||||
|
CODE_MAX_OBJECT_ARRAY_LENGTH=30
|
||||||
|
CODE_MAX_NUMBER_ARRAY_LENGTH=1000
|
||||||
|
|
||||||
|
# API Tool configuration
|
||||||
|
API_TOOL_DEFAULT_CONNECT_TIMEOUT=10
|
||||||
|
API_TOOL_DEFAULT_READ_TIMEOUT=60
|
@ -85,6 +85,15 @@ RELYT_USER=postgres
|
|||||||
RELYT_PASSWORD=postgres
|
RELYT_PASSWORD=postgres
|
||||||
RELYT_DATABASE=postgres
|
RELYT_DATABASE=postgres
|
||||||
|
|
||||||
|
# Tencent configuration
|
||||||
|
TENCENT_URL=http://127.0.0.1
|
||||||
|
TENCENT_API_KEY=dify
|
||||||
|
TENCENT_TIMEOUT=30
|
||||||
|
TENCENT_USERNAME=dify
|
||||||
|
TENCENT_DATABASE=dify
|
||||||
|
TENCENT_SHARD=1
|
||||||
|
TENCENT_REPLICAS=2
|
||||||
|
|
||||||
# Upload configuration
|
# Upload configuration
|
||||||
UPLOAD_FILE_SIZE_LIMIT=15
|
UPLOAD_FILE_SIZE_LIMIT=15
|
||||||
UPLOAD_FILE_BATCH_LIMIT=5
|
UPLOAD_FILE_BATCH_LIMIT=5
|
||||||
|
@ -305,6 +305,14 @@ def migrate_knowledge_vector_database():
|
|||||||
"vector_store": {"class_prefix": collection_name}
|
"vector_store": {"class_prefix": collection_name}
|
||||||
}
|
}
|
||||||
dataset.index_struct = json.dumps(index_struct_dict)
|
dataset.index_struct = json.dumps(index_struct_dict)
|
||||||
|
elif vector_type == "tencent":
|
||||||
|
dataset_id = dataset.id
|
||||||
|
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||||
|
index_struct_dict = {
|
||||||
|
"type": 'tencent',
|
||||||
|
"vector_store": {"class_prefix": collection_name}
|
||||||
|
}
|
||||||
|
dataset.index_struct = json.dumps(index_struct_dict)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
|
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
|
||||||
|
|
||||||
|
@ -228,6 +228,15 @@ class Config:
|
|||||||
self.RELYT_PASSWORD = get_env('RELYT_PASSWORD')
|
self.RELYT_PASSWORD = get_env('RELYT_PASSWORD')
|
||||||
self.RELYT_DATABASE = get_env('RELYT_DATABASE')
|
self.RELYT_DATABASE = get_env('RELYT_DATABASE')
|
||||||
|
|
||||||
|
# tencent settings
|
||||||
|
self.TENCENT_URL = get_env('TENCENT_URL')
|
||||||
|
self.TENCENT_API_KEY = get_env('TENCENT_API_KEY')
|
||||||
|
self.TENCENT_TIMEOUT = get_env('TENCENT_TIMEOUT')
|
||||||
|
self.TENCENT_USERNAME = get_env('TENCENT_USERNAME')
|
||||||
|
self.TENCENT_DATABASE = get_env('TENCENT_DATABASE')
|
||||||
|
self.TENCENT_SHARD = get_env('TENCENT_SHARD')
|
||||||
|
self.TENCENT_REPLICAS = get_env('TENCENT_REPLICAS')
|
||||||
|
|
||||||
# ------------------------
|
# ------------------------
|
||||||
# Mail Configurations.
|
# Mail Configurations.
|
||||||
# ------------------------
|
# ------------------------
|
||||||
|
@ -475,7 +475,7 @@ class DatasetRetrievalSettingApi(Resource):
|
|||||||
'semantic_search'
|
'semantic_search'
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
elif vector_type == 'qdrant' or vector_type == 'weaviate':
|
elif vector_type == 'qdrant' or vector_type == 'weaviate' or vector_type == 'tencent':
|
||||||
return {
|
return {
|
||||||
'retrieval_method': [
|
'retrieval_method': [
|
||||||
'semantic_search', 'full_text_search', 'hybrid_search'
|
'semantic_search', 'full_text_search', 'hybrid_search'
|
||||||
@ -497,7 +497,7 @@ class DatasetRetrievalSettingMockApi(Resource):
|
|||||||
'semantic_search'
|
'semantic_search'
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
elif vector_type == 'qdrant' or vector_type == 'weaviate':
|
elif vector_type == 'qdrant' or vector_type == 'weaviate' or vector_type == 'tencent':
|
||||||
return {
|
return {
|
||||||
'retrieval_method': [
|
'retrieval_method': [
|
||||||
'semantic_search', 'full_text_search', 'hybrid_search'
|
'semantic_search', 'full_text_search', 'hybrid_search'
|
||||||
|
0
api/core/rag/datasource/vdb/tencent/__init__.py
Normal file
0
api/core/rag/datasource/vdb/tencent/__init__.py
Normal file
182
api/core/rag/datasource/vdb/tencent/tencent_vector.py
Normal file
182
api/core/rag/datasource/vdb/tencent/tencent_vector.py
Normal file
@ -0,0 +1,182 @@
|
|||||||
|
import json
|
||||||
|
from typing import Any, Optional
|
||||||
|
|
||||||
|
import tcvectordb
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from tcvectordb.model import document, enum
|
||||||
|
from tcvectordb.model import index as vdb_index
|
||||||
|
from tcvectordb.model.document import Filter
|
||||||
|
|
||||||
|
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||||
|
from core.rag.models.document import Document
|
||||||
|
from extensions.ext_redis import redis_client
|
||||||
|
|
||||||
|
|
||||||
|
class TencentConfig(BaseModel):
|
||||||
|
url: str
|
||||||
|
api_key: Optional[str]
|
||||||
|
timeout: float = 30
|
||||||
|
username: Optional[str]
|
||||||
|
database: Optional[str]
|
||||||
|
index_type: str = "HNSW"
|
||||||
|
metric_type: str = "L2"
|
||||||
|
shard: int = 1,
|
||||||
|
replicas: int = 2,
|
||||||
|
|
||||||
|
def to_tencent_params(self):
|
||||||
|
return {
|
||||||
|
'url': self.url,
|
||||||
|
'username': self.username,
|
||||||
|
'key': self.api_key,
|
||||||
|
'timeout': self.timeout
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TencentVector(BaseVector):
|
||||||
|
field_id: str = "id"
|
||||||
|
field_vector: str = "vector"
|
||||||
|
field_text: str = "text"
|
||||||
|
field_metadata: str = "metadata"
|
||||||
|
|
||||||
|
def __init__(self, collection_name: str, config: TencentConfig):
|
||||||
|
super().__init__(collection_name)
|
||||||
|
self._client_config = config
|
||||||
|
self._client = tcvectordb.VectorDBClient(**self._client_config.to_tencent_params())
|
||||||
|
self._db = self._init_database()
|
||||||
|
|
||||||
|
def _init_database(self):
|
||||||
|
exists = False
|
||||||
|
for db in self._client.list_databases():
|
||||||
|
if db.database_name == self._client_config.database:
|
||||||
|
exists = True
|
||||||
|
break
|
||||||
|
if exists:
|
||||||
|
return self._client.database(self._client_config.database)
|
||||||
|
else:
|
||||||
|
return self._client.create_database(database_name=self._client_config.database)
|
||||||
|
|
||||||
|
def get_type(self) -> str:
|
||||||
|
return 'tencent'
|
||||||
|
|
||||||
|
def to_index_struct(self) -> dict:
|
||||||
|
return {
|
||||||
|
"type": self.get_type(),
|
||||||
|
"vector_store": {"class_prefix": self._collection_name}
|
||||||
|
}
|
||||||
|
|
||||||
|
def _create_collection(self, dimension: int) -> None:
|
||||||
|
lock_name = 'vector_indexing_lock_{}'.format(self._collection_name)
|
||||||
|
with redis_client.lock(lock_name, timeout=20):
|
||||||
|
self.delete()
|
||||||
|
index_type = None
|
||||||
|
for k, v in enum.IndexType.__members__.items():
|
||||||
|
if k == self._client_config.index_type:
|
||||||
|
index_type = v
|
||||||
|
if index_type is None:
|
||||||
|
raise ValueError("unsupported index_type")
|
||||||
|
metric_type = None
|
||||||
|
for k, v in enum.MetricType.__members__.items():
|
||||||
|
if k == self._client_config.metric_type:
|
||||||
|
metric_type = v
|
||||||
|
if metric_type is None:
|
||||||
|
raise ValueError("unsupported metric_type")
|
||||||
|
params = vdb_index.HNSWParams(m=16, efconstruction=200)
|
||||||
|
index = vdb_index.Index(
|
||||||
|
vdb_index.FilterIndex(
|
||||||
|
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
|
||||||
|
),
|
||||||
|
vdb_index.VectorIndex(
|
||||||
|
self.field_vector,
|
||||||
|
dimension,
|
||||||
|
index_type,
|
||||||
|
metric_type,
|
||||||
|
params,
|
||||||
|
),
|
||||||
|
vdb_index.FilterIndex(
|
||||||
|
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
|
||||||
|
),
|
||||||
|
vdb_index.FilterIndex(
|
||||||
|
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.collection = self._db.create_collection(
|
||||||
|
name=self._collection_name,
|
||||||
|
shard=self._client_config.shard,
|
||||||
|
replicas=self._client_config.replicas,
|
||||||
|
description="Collection for Dify",
|
||||||
|
index=index,
|
||||||
|
)
|
||||||
|
|
||||||
|
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||||
|
self._create_collection(len(embeddings[0]))
|
||||||
|
self.add_texts(texts, embeddings)
|
||||||
|
|
||||||
|
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||||
|
texts = [doc.page_content for doc in documents]
|
||||||
|
metadatas = [doc.metadata for doc in documents]
|
||||||
|
total_count = len(embeddings)
|
||||||
|
docs = []
|
||||||
|
for id in range(0, total_count):
|
||||||
|
if metadatas is None:
|
||||||
|
continue
|
||||||
|
metadata = json.dumps(metadatas[id])
|
||||||
|
doc = document.Document(
|
||||||
|
id=metadatas[id]["doc_id"],
|
||||||
|
vector=embeddings[id],
|
||||||
|
text=texts[id],
|
||||||
|
metadata=metadata,
|
||||||
|
)
|
||||||
|
docs.append(doc)
|
||||||
|
self.collection.upsert(docs, self._client_config.timeout)
|
||||||
|
|
||||||
|
def text_exists(self, id: str) -> bool:
|
||||||
|
docs = self._db.collection(self._collection_name).query(document_ids=[id])
|
||||||
|
if docs and len(docs) > 0:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def delete_by_ids(self, ids: list[str]) -> None:
|
||||||
|
self._db.collection(self._collection_name).delete(document_ids=ids)
|
||||||
|
|
||||||
|
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||||
|
docs = self._db.collection(self._collection_name).query(filter=Filter(Filter.In(key, [value])))
|
||||||
|
if docs and len(docs) > 0:
|
||||||
|
self.collection.delete(document_ids=[doc['id'] for doc in docs])
|
||||||
|
|
||||||
|
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||||
|
|
||||||
|
res = self._db.collection(self._collection_name).search(vectors=[query_vector],
|
||||||
|
params=document.HNSWSearchParams(
|
||||||
|
ef=kwargs.get("ef", 10)),
|
||||||
|
retrieve_vector=False,
|
||||||
|
limit=kwargs.get('top_k', 4),
|
||||||
|
timeout=self._client_config.timeout,
|
||||||
|
)
|
||||||
|
return self._get_search_res(res)
|
||||||
|
|
||||||
|
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||||
|
res = (self._db.collection(self._collection_name)
|
||||||
|
.searchByText(embeddingItems=[query],
|
||||||
|
params=document.HNSWSearchParams(ef=kwargs.get("ef", 10)),
|
||||||
|
retrieve_vector=False,
|
||||||
|
limit=kwargs.get('top_k', 4),
|
||||||
|
timeout=self._client_config.timeout,
|
||||||
|
))
|
||||||
|
return self._get_search_res(res)
|
||||||
|
|
||||||
|
def _get_search_res(self, res):
|
||||||
|
docs = []
|
||||||
|
if res is None or len(res) == 0:
|
||||||
|
return docs
|
||||||
|
|
||||||
|
for result in res[0]:
|
||||||
|
meta = result.get(self.field_metadata)
|
||||||
|
if meta is not None:
|
||||||
|
meta = json.loads(meta)
|
||||||
|
doc = Document(page_content=result.get(self.field_text), metadata=meta)
|
||||||
|
docs.append(doc)
|
||||||
|
return docs
|
||||||
|
|
||||||
|
def delete(self) -> None:
|
||||||
|
self._db.drop_collection(name=self._collection_name)
|
@ -25,7 +25,6 @@ class Vector:
|
|||||||
def _init_vector(self) -> BaseVector:
|
def _init_vector(self) -> BaseVector:
|
||||||
config = current_app.config
|
config = current_app.config
|
||||||
vector_type = config.get('VECTOR_STORE')
|
vector_type = config.get('VECTOR_STORE')
|
||||||
|
|
||||||
if self._dataset.index_struct_dict:
|
if self._dataset.index_struct_dict:
|
||||||
vector_type = self._dataset.index_struct_dict['type']
|
vector_type = self._dataset.index_struct_dict['type']
|
||||||
|
|
||||||
@ -138,6 +137,31 @@ class Vector:
|
|||||||
),
|
),
|
||||||
dim=dim
|
dim=dim
|
||||||
)
|
)
|
||||||
|
elif vector_type == "tencent":
|
||||||
|
from core.rag.datasource.vdb.tencent.tencent_vector import TencentConfig, TencentVector
|
||||||
|
if self._dataset.index_struct_dict:
|
||||||
|
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
|
||||||
|
collection_name = class_prefix
|
||||||
|
else:
|
||||||
|
dataset_id = self._dataset.id
|
||||||
|
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||||
|
index_struct_dict = {
|
||||||
|
"type": 'tencent',
|
||||||
|
"vector_store": {"class_prefix": collection_name}
|
||||||
|
}
|
||||||
|
self._dataset.index_struct = json.dumps(index_struct_dict)
|
||||||
|
return TencentVector(
|
||||||
|
collection_name=collection_name,
|
||||||
|
config=TencentConfig(
|
||||||
|
url=config.get('TENCENT_URL'),
|
||||||
|
api_key=config.get('TENCENT_API_KEY'),
|
||||||
|
timeout=config.get('TENCENT_TIMEOUT'),
|
||||||
|
username=config.get('TENCENT_USERNAME'),
|
||||||
|
database=config.get('TENCENT_DATABASE'),
|
||||||
|
shard=config.get('TENCENT_SHARD'),
|
||||||
|
replicas=config.get('TENCENT_REPLICAS'),
|
||||||
|
)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
|
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")
|
||||||
|
|
||||||
|
@ -229,6 +229,14 @@ services:
|
|||||||
RELYT_USER: postgres
|
RELYT_USER: postgres
|
||||||
RELYT_PASSWORD: difyai123456
|
RELYT_PASSWORD: difyai123456
|
||||||
RELYT_DATABASE: postgres
|
RELYT_DATABASE: postgres
|
||||||
|
# tencent configurations
|
||||||
|
TENCENT_URL: http://127.0.0.1
|
||||||
|
TENCENT_API_KEY: dify
|
||||||
|
TENCENT_TIMEOUT: 30
|
||||||
|
TENCENT_USERNAME: dify
|
||||||
|
TENCENT_DATABASE: dify
|
||||||
|
TENCENT_SHARD: 1
|
||||||
|
TENCENT_REPLICAS: 2
|
||||||
depends_on:
|
depends_on:
|
||||||
- db
|
- db
|
||||||
- redis
|
- redis
|
||||||
|
Loading…
Reference in New Issue
Block a user