feat: support backwards invoke summary
This commit is contained in:
parent
7754431a34
commit
45f8651a3d
@ -19,6 +19,7 @@ from core.plugin.entities.request import (
|
||||
RequestInvokeQuestionClassifierNode,
|
||||
RequestInvokeRerank,
|
||||
RequestInvokeSpeech2Text,
|
||||
RequestInvokeSummary,
|
||||
RequestInvokeTextEmbedding,
|
||||
RequestInvokeTool,
|
||||
RequestInvokeTTS,
|
||||
@ -230,6 +231,24 @@ class PluginInvokeEncryptApi(Resource):
|
||||
return BaseBackwardsInvocationResponse(error=str(e)).model_dump()
|
||||
|
||||
|
||||
class PluginInvokeSummaryApi(Resource):
|
||||
@setup_required
|
||||
@plugin_inner_api_only
|
||||
@get_tenant
|
||||
@plugin_data(payload_type=RequestInvokeSummary)
|
||||
def post(self, user_id: str, tenant_model: Tenant, payload: RequestInvokeSummary):
|
||||
try:
|
||||
return BaseBackwardsInvocationResponse(
|
||||
data=PluginModelBackwardsInvocation.invoke_summary(
|
||||
user_id=user_id,
|
||||
tenant=tenant_model,
|
||||
payload=payload,
|
||||
)
|
||||
).model_dump()
|
||||
except Exception as e:
|
||||
return BaseBackwardsInvocationResponse(error=str(e)).model_dump()
|
||||
|
||||
|
||||
api.add_resource(PluginInvokeLLMApi, "/invoke/llm")
|
||||
api.add_resource(PluginInvokeTextEmbeddingApi, "/invoke/text-embedding")
|
||||
api.add_resource(PluginInvokeRerankApi, "/invoke/rerank")
|
||||
@ -241,3 +260,4 @@ api.add_resource(PluginInvokeParameterExtractorNodeApi, "/invoke/parameter-extra
|
||||
api.add_resource(PluginInvokeQuestionClassifierNodeApi, "/invoke/question-classifier")
|
||||
api.add_resource(PluginInvokeAppApi, "/invoke/app")
|
||||
api.add_resource(PluginInvokeEncryptApi, "/invoke/encrypt")
|
||||
api.add_resource(PluginInvokeSummaryApi, "/invoke/summary")
|
||||
|
@ -4,15 +4,23 @@ from collections.abc import Generator
|
||||
|
||||
from core.model_manager import ModelManager
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
|
||||
from core.plugin.entities.request import (
|
||||
RequestInvokeLLM,
|
||||
RequestInvokeModeration,
|
||||
RequestInvokeRerank,
|
||||
RequestInvokeSpeech2Text,
|
||||
RequestInvokeSummary,
|
||||
RequestInvokeTextEmbedding,
|
||||
RequestInvokeTTS,
|
||||
)
|
||||
from core.tools.entities.tool_entities import ToolProviderType
|
||||
from core.tools.utils.model_invocation_utils import ModelInvocationUtils
|
||||
from core.workflow.nodes.llm.llm_node import LLMNode
|
||||
from models.account import Tenant
|
||||
|
||||
@ -175,3 +183,139 @@ class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
|
||||
return {
|
||||
"result": response,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_system_model_max_tokens(cls, tenant_id: str) -> int:
|
||||
"""
|
||||
get system model max tokens
|
||||
"""
|
||||
return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
|
||||
|
||||
@classmethod
|
||||
def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
|
||||
"""
|
||||
get prompt tokens
|
||||
"""
|
||||
return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
|
||||
|
||||
@classmethod
|
||||
def invoke_system_model(
|
||||
cls,
|
||||
user_id: str,
|
||||
tenant: Tenant,
|
||||
prompt_messages: list[PromptMessage],
|
||||
) -> LLMResult:
|
||||
"""
|
||||
invoke system model
|
||||
"""
|
||||
return ModelInvocationUtils.invoke(
|
||||
user_id=user_id,
|
||||
tenant_id=tenant.id,
|
||||
tool_type=ToolProviderType.PLUGIN,
|
||||
tool_name="plugin",
|
||||
prompt_messages=prompt_messages,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
|
||||
"""
|
||||
invoke summary
|
||||
"""
|
||||
max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
|
||||
content = payload.text
|
||||
|
||||
SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
|
||||
and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
|
||||
retain the original meaning and keep the key points.
|
||||
however, the text you got is too long, what you got is possible a part of the text.
|
||||
Please summarize the text you got.
|
||||
|
||||
Here is the extra instruction you need to follow:
|
||||
<extra_instruction>
|
||||
{payload.instruction}
|
||||
</extra_instruction>
|
||||
"""
|
||||
|
||||
if (
|
||||
cls.get_prompt_tokens(
|
||||
tenant_id=tenant.id,
|
||||
prompt_messages=[UserPromptMessage(content=content)],
|
||||
)
|
||||
< max_tokens * 0.6
|
||||
):
|
||||
return content
|
||||
|
||||
def get_prompt_tokens(content: str) -> int:
|
||||
return cls.get_prompt_tokens(
|
||||
tenant_id=tenant.id,
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
|
||||
UserPromptMessage(content=content),
|
||||
],
|
||||
)
|
||||
|
||||
def summarize(content: str) -> str:
|
||||
summary = cls.invoke_system_model(
|
||||
user_id=user_id,
|
||||
tenant=tenant,
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
|
||||
UserPromptMessage(content=content),
|
||||
],
|
||||
)
|
||||
|
||||
assert isinstance(summary.message.content, str)
|
||||
return summary.message.content
|
||||
|
||||
lines = content.split("\n")
|
||||
new_lines = []
|
||||
# split long line into multiple lines
|
||||
for i in range(len(lines)):
|
||||
line = lines[i]
|
||||
if not line.strip():
|
||||
continue
|
||||
if len(line) < max_tokens * 0.5:
|
||||
new_lines.append(line)
|
||||
elif get_prompt_tokens(line) > max_tokens * 0.7:
|
||||
while get_prompt_tokens(line) > max_tokens * 0.7:
|
||||
new_lines.append(line[: int(max_tokens * 0.5)])
|
||||
line = line[int(max_tokens * 0.5) :]
|
||||
new_lines.append(line)
|
||||
else:
|
||||
new_lines.append(line)
|
||||
|
||||
# merge lines into messages with max tokens
|
||||
messages: list[str] = []
|
||||
for i in new_lines:
|
||||
if len(messages) == 0:
|
||||
messages.append(i)
|
||||
else:
|
||||
if len(messages[-1]) + len(i) < max_tokens * 0.5:
|
||||
messages[-1] += i
|
||||
if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
|
||||
messages.append(i)
|
||||
else:
|
||||
messages[-1] += i
|
||||
|
||||
summaries = []
|
||||
for i in range(len(messages)):
|
||||
message = messages[i]
|
||||
summary = summarize(message)
|
||||
summaries.append(summary)
|
||||
|
||||
result = "\n".join(summaries)
|
||||
|
||||
if (
|
||||
cls.get_prompt_tokens(
|
||||
tenant_id=tenant.id,
|
||||
prompt_messages=[UserPromptMessage(content=result)],
|
||||
)
|
||||
> max_tokens * 0.7
|
||||
):
|
||||
return cls.invoke_summary(
|
||||
user_id=user_id,
|
||||
tenant=tenant,
|
||||
payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
|
||||
)
|
||||
|
||||
return result
|
||||
|
@ -186,3 +186,12 @@ class RequestInvokeEncrypt(BaseModel):
|
||||
identity: str
|
||||
data: dict = Field(default_factory=dict)
|
||||
config: list[BasicProviderConfig] = Field(default_factory=list)
|
||||
|
||||
|
||||
class RequestInvokeSummary(BaseModel):
|
||||
"""
|
||||
Request to summary
|
||||
"""
|
||||
|
||||
text: str
|
||||
instruction: str
|
||||
|
Loading…
Reference in New Issue
Block a user