Merge branch 'langgenius:main' into feat-add-childchunk-api

This commit is contained in:
GuanMu 2025-03-18 15:11:53 +08:00 committed by GitHub
commit 5211e7f7c7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 34 additions and 4 deletions

View File

@ -149,6 +149,11 @@ class ProviderManager:
provider_name = provider_entity.provider
provider_records = provider_name_to_provider_records_dict.get(provider_entity.provider, [])
provider_model_records = provider_name_to_provider_model_records_dict.get(provider_entity.provider, [])
provider_id_entity = ModelProviderID(provider_name)
if provider_id_entity.is_langgenius():
provider_model_records.extend(
provider_name_to_provider_model_records_dict.get(provider_id_entity.provider_name, [])
)
# Convert to custom configuration
custom_configuration = self._to_custom_configuration(
@ -190,6 +195,20 @@ class ProviderManager:
provider_name
)
provider_id_entity = ModelProviderID(provider_name)
if provider_id_entity.is_langgenius():
if provider_model_settings is not None:
provider_model_settings.extend(
provider_name_to_provider_model_settings_dict.get(provider_id_entity.provider_name, [])
)
if provider_load_balancing_configs is not None:
provider_load_balancing_configs.extend(
provider_name_to_provider_load_balancing_model_configs_dict.get(
provider_id_entity.provider_name, []
)
)
# Convert to model settings
model_settings = self._to_model_settings(
provider_entity=provider_entity,
@ -207,7 +226,7 @@ class ProviderManager:
model_settings=model_settings,
)
provider_configurations[str(ModelProviderID(provider_name))] = provider_configuration
provider_configurations[str(provider_id_entity)] = provider_configuration
# Return the encapsulated object
return provider_configurations

View File

@ -194,6 +194,8 @@ class AnalyticdbVectorBySql:
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
score_threshold = float(kwargs.get("score_threshold") or 0.0)
with self._get_cursor() as cur:
query_vector_str = json.dumps(query_vector)
@ -220,6 +222,8 @@ class AnalyticdbVectorBySql:
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
f"""SELECT id, vector, page_content, metadata_,

View File

@ -125,6 +125,8 @@ class MyScaleVector(BaseVector):
def _search(self, dist: str, order: SortOrder, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
score_threshold = float(kwargs.get("score_threshold") or 0.0)
where_str = (
f"WHERE dist < {1 - score_threshold}"

View File

@ -155,7 +155,8 @@ class OpenGauss(BaseVector):
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
f"SELECT meta, text, embedding <=> %s AS distance FROM {self.table_name}"
@ -174,7 +175,8 @@ class OpenGauss(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
f"""SELECT meta, text, ts_rank(to_tsvector(coalesce(text, '')), plainto_tsquery(%s)) AS score

View File

@ -171,6 +171,8 @@ class PGVector(BaseVector):
:return: List of Documents that are nearest to the query vector.
"""
top_k = kwargs.get("top_k", 4)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
cur.execute(
@ -190,7 +192,8 @@ class PGVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError("top_k must be a positive integer")
with self._get_cursor() as cur:
if self.pg_bigm:
cur.execute("SET pg_bigm.similarity_limit TO 0.000001")