add rag test
This commit is contained in:
parent
cc84d07765
commit
703aefbd17
@ -1,73 +1,64 @@
|
||||
from ctypes import Union
|
||||
from typing import List, Optional, Tuple
|
||||
from qdrant_client.conversions import common_types as types
|
||||
from typing import List
|
||||
|
||||
|
||||
class MockMilvusClass(object):
|
||||
|
||||
@staticmethod
|
||||
def get_collections() -> types.CollectionsResponse:
|
||||
collections_response = types.CollectionsResponse(
|
||||
collections=["test"]
|
||||
)
|
||||
return collections_response
|
||||
|
||||
@staticmethod
|
||||
def recreate_collection() -> bool:
|
||||
return True
|
||||
|
||||
@staticmethod
|
||||
def create_payload_index() -> types.UpdateResult:
|
||||
update_result = types.UpdateResult(
|
||||
updated=1
|
||||
)
|
||||
return update_result
|
||||
|
||||
@staticmethod
|
||||
def upsert() -> types.UpdateResult:
|
||||
update_result = types.UpdateResult(
|
||||
updated=1
|
||||
)
|
||||
return update_result
|
||||
|
||||
@staticmethod
|
||||
def insert() -> List[Union[str, int]]:
|
||||
result = ['d48632d7-c972-484a-8ed9-262490919c79']
|
||||
result = [447829498067199697]
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def delete() -> List[Union[str, int]]:
|
||||
result = ['d48632d7-c972-484a-8ed9-262490919c79']
|
||||
result = [447829498067199697]
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def scroll() -> Tuple[List[types.Record], Optional[types.PointId]]:
|
||||
|
||||
record = types.Record(
|
||||
id='d48632d7-c972-484a-8ed9-262490919c79',
|
||||
payload={'group_id': '06798db6-1f99-489a-b599-dd386a043f2d',
|
||||
'metadata': {'dataset_id': '06798db6-1f99-489a-b599-dd386a043f2d',
|
||||
'doc_hash': '85197672a2c2b05d2c8690cb7f1eedc78fe5f0ca7b8ae8a301f64eb8d959b436',
|
||||
'doc_id': 'd48632d7-c972-484a-8ed9-262490919c79',
|
||||
'document_id': '1518a57d-9049-426e-99ae-5a6d479175c0'},
|
||||
'page_content': 'Dify is a company that provides a platform for the development of AI models.'},
|
||||
vector=[0.23333 for _ in range(233)]
|
||||
)
|
||||
return [record], 'd48632d7-c972-484a-8ed9-262490919c79'
|
||||
def search() -> List[dict]:
|
||||
result = [
|
||||
{
|
||||
'id': 447829498067199697,
|
||||
'distance': 0.8776655793190002,
|
||||
'entity': {
|
||||
'page_content': 'Dify is a company that provides a platform for the development of AI models.',
|
||||
'metadata':
|
||||
{
|
||||
'doc_id': '327d1cb8-15ce-4934-bede-936a13c19ace',
|
||||
'doc_hash': '7ee3cf010e606bb768c3bca7b1397ff651fd008ef10e56a646c537d2c8afb319',
|
||||
'document_id': '6c4619dd-2169-4879-b05a-b8937c98c80c',
|
||||
'dataset_id': 'a2f4f4eb-75eb-4432-8c5f-788100533454'
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def search() -> List[types.ScoredPoint]:
|
||||
result = types.ScoredPoint(
|
||||
id='d48632d7-c972-484a-8ed9-262490919c79',
|
||||
payload={'group_id': '06798db6-1f99-489a-b599-dd386a043f2d',
|
||||
'metadata': {'dataset_id': '06798db6-1f99-489a-b599-dd386a043f2d',
|
||||
'doc_hash': '85197672a2c2b05d2c8690cb7f1eedc78fe5f0ca7b8ae8a301f64eb8d959b436',
|
||||
'doc_id': 'd48632d7-c972-484a-8ed9-262490919c79',
|
||||
'document_id': '1518a57d-9049-426e-99ae-5a6d479175c0'},
|
||||
'page_content': 'Dify is a company that provides a platform for the development of AI models.'},
|
||||
vision=999,
|
||||
vector=[0.23333 for _ in range(233)],
|
||||
score=0.99
|
||||
)
|
||||
return [result]
|
||||
def query() -> List[dict]:
|
||||
result = [
|
||||
{
|
||||
'id': 447829498067199697,
|
||||
'distance': 0.8776655793190002,
|
||||
'entity': {
|
||||
'page_content': 'Dify is a company that provides a platform for the development of AI models.',
|
||||
'metadata':
|
||||
{
|
||||
'doc_id': '327d1cb8-15ce-4934-bede-936a13c19ace',
|
||||
'doc_hash': '7ee3cf010e606bb768c3bca7b1397ff651fd008ef10e56a646c537d2c8afb319',
|
||||
'document_id': '6c4619dd-2169-4879-b05a-b8937c98c80c',
|
||||
'dataset_id': 'a2f4f4eb-75eb-4432-8c5f-788100533454'
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def create_collection_with_schema():
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def has_collection() -> bool:
|
||||
return True
|
||||
|
||||
|
@ -27,18 +27,18 @@ def mock_milvus(monkeypatch: MonkeyPatch, methods: List[Literal["get_collections
|
||||
|
||||
if "connect" in methods:
|
||||
monkeypatch.setattr(Connections, "connect", MockMilvusClass.delete())
|
||||
if "get_collections" in methods:
|
||||
monkeypatch.setattr(utility, "has_collection", MockMilvusClass.get_collections())
|
||||
if "has_collection" in methods:
|
||||
monkeypatch.setattr(utility, "has_collection", MockMilvusClass.has_collection())
|
||||
if "insert" in methods:
|
||||
monkeypatch.setattr(MilvusClient, "insert", MockMilvusClass.insert())
|
||||
if "create_payload_index" in methods:
|
||||
monkeypatch.setattr(QdrantClient, "create_payload_index", MockMilvusClass.create_payload_index())
|
||||
if "upsert" in methods:
|
||||
monkeypatch.setattr(QdrantClient, "upsert", MockMilvusClass.upsert())
|
||||
if "scroll" in methods:
|
||||
monkeypatch.setattr(QdrantClient, "scroll", MockMilvusClass.scroll())
|
||||
if "query" in methods:
|
||||
monkeypatch.setattr(MilvusClient, "query", MockMilvusClass.query())
|
||||
if "delete" in methods:
|
||||
monkeypatch.setattr(MilvusClient, "delete", MockMilvusClass.delete())
|
||||
if "search" in methods:
|
||||
monkeypatch.setattr(QdrantClient, "search", MockMilvusClass.search())
|
||||
monkeypatch.setattr(MilvusClient, "search", MockMilvusClass.search())
|
||||
if "create_collection_with_schema" in methods:
|
||||
monkeypatch.setattr(MilvusClient, "create_collection_with_schema", MockMilvusClass.create_collection_with_schema())
|
||||
|
||||
return unpatch
|
||||
|
||||
|
@ -0,0 +1,113 @@
|
||||
"""test paragraph index processor."""
|
||||
import datetime
|
||||
import uuid
|
||||
from typing import Optional
|
||||
|
||||
from core.rag.cleaner.clean_processor import CleanProcessor
|
||||
from core.rag.datasource.keyword.keyword_factory import Keyword
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.datasource.vdb.vector_factory import Vector
|
||||
from core.rag.extractor.entity.extract_setting import ExtractSetting
|
||||
from core.rag.extractor.extract_processor import ExtractProcessor
|
||||
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
|
||||
from core.rag.models.document import Document
|
||||
from libs import helper
|
||||
from models.dataset import Dataset
|
||||
from models.model import UploadFile
|
||||
|
||||
|
||||
class ParagraphIndexProcessor(BaseIndexProcessor):
|
||||
|
||||
def extract(self) -> list[Document]:
|
||||
file_detail = UploadFile(
|
||||
tenant_id='test',
|
||||
storage_type='local',
|
||||
key='test.txt',
|
||||
name='test.txt',
|
||||
size=1024,
|
||||
extension='txt',
|
||||
mime_type='text/plain',
|
||||
created_by='test',
|
||||
created_at=datetime.datetime.utcnow(),
|
||||
used=True,
|
||||
used_by='d48632d7-c972-484a-8ed9-262490919c79',
|
||||
used_at=datetime.datetime.utcnow()
|
||||
)
|
||||
extract_setting = ExtractSetting(
|
||||
datasource_type="upload_file",
|
||||
upload_file=file_detail,
|
||||
document_model='text_model'
|
||||
)
|
||||
|
||||
text_docs = ExtractProcessor.extract(extract_setting=extract_setting,
|
||||
is_automatic=False)
|
||||
|
||||
return text_docs
|
||||
|
||||
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
|
||||
# Split the text documents into nodes.
|
||||
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
|
||||
embedding_model_instance=kwargs.get('embedding_model_instance'))
|
||||
all_documents = []
|
||||
for document in documents:
|
||||
# document clean
|
||||
document_text = CleanProcessor.clean(document.page_content, kwargs.get('process_rule'))
|
||||
document.page_content = document_text
|
||||
# parse document to nodes
|
||||
document_nodes = splitter.split_documents([document])
|
||||
split_documents = []
|
||||
for document_node in document_nodes:
|
||||
|
||||
if document_node.page_content.strip():
|
||||
doc_id = str(uuid.uuid4())
|
||||
hash = helper.generate_text_hash(document_node.page_content)
|
||||
document_node.metadata['doc_id'] = doc_id
|
||||
document_node.metadata['doc_hash'] = hash
|
||||
# delete Spliter character
|
||||
page_content = document_node.page_content
|
||||
if page_content.startswith(".") or page_content.startswith("。"):
|
||||
page_content = page_content[1:]
|
||||
else:
|
||||
page_content = page_content
|
||||
document_node.page_content = page_content
|
||||
split_documents.append(document_node)
|
||||
all_documents.extend(split_documents)
|
||||
return all_documents
|
||||
|
||||
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
vector.create(documents)
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
keyword.create(documents)
|
||||
|
||||
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
|
||||
if dataset.indexing_technique == 'high_quality':
|
||||
vector = Vector(dataset)
|
||||
if node_ids:
|
||||
vector.delete_by_ids(node_ids)
|
||||
else:
|
||||
vector.delete()
|
||||
if with_keywords:
|
||||
keyword = Keyword(dataset)
|
||||
if node_ids:
|
||||
keyword.delete_by_ids(node_ids)
|
||||
else:
|
||||
keyword.delete()
|
||||
|
||||
def retrieve(self, retrival_method: str, query: str, dataset: Dataset, top_k: int,
|
||||
score_threshold: float, reranking_model: dict) -> list[Document]:
|
||||
# Set search parameters.
|
||||
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id, query=query,
|
||||
top_k=top_k, score_threshold=score_threshold,
|
||||
reranking_model=reranking_model)
|
||||
# Organize results.
|
||||
docs = []
|
||||
for result in results:
|
||||
metadata = result.metadata
|
||||
metadata['score'] = result.score
|
||||
if result.score > score_threshold:
|
||||
doc = Document(page_content=result.page_content, metadata=metadata)
|
||||
docs.append(doc)
|
||||
return docs
|
Loading…
Reference in New Issue
Block a user