fix: correct linewrap think display in generic openai api (#13260)

Signed-off-by: xhe <xw897002528@gmail.com>
This commit is contained in:
xhe 2025-02-06 10:53:08 +08:00 committed by GitHub
parent 7673c36af3
commit da2ee04fce
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 26 additions and 440 deletions

View File

@ -1,13 +1,10 @@
import json
from collections.abc import Generator
from typing import Optional, Union
import requests
from yarl import URL
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
)
@ -39,208 +36,3 @@ class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
credentials["mode"] = LLMMode.CHAT.value
credentials["function_calling_type"] = "tool_call"
credentials["stream_function_calling"] = "support"
def _handle_generate_stream_response(
self, model: str, credentials: dict, response: requests.Response, prompt_messages: list[PromptMessage]
) -> Generator:
"""
Handle llm stream response
:param model: model name
:param credentials: model credentials
:param response: streamed response
:param prompt_messages: prompt messages
:return: llm response chunk generator
"""
full_assistant_content = ""
chunk_index = 0
is_reasoning_started = False # Add flag to track reasoning state
def create_final_llm_result_chunk(
id: Optional[str], index: int, message: AssistantPromptMessage, finish_reason: str, usage: dict
) -> LLMResultChunk:
# calculate num tokens
prompt_tokens = usage and usage.get("prompt_tokens")
if prompt_tokens is None:
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = usage and usage.get("completion_tokens")
if completion_tokens is None:
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
id=id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
)
# delimiter for stream response, need unicode_escape
import codecs
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
delimiter = codecs.decode(delimiter, "unicode_escape")
tools_calls: list[AssistantPromptMessage.ToolCall] = []
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
def get_tool_call(tool_call_id: str):
if not tool_call_id:
return tools_calls[-1]
tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
tools_calls.append(tool_call)
return tool_call
for new_tool_call in new_tool_calls:
# get tool call
tool_call = get_tool_call(new_tool_call.function.name)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
finish_reason = None # The default value of finish_reason is None
message_id, usage = None, None
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
chunk = chunk.strip()
if chunk:
# ignore sse comments
if chunk.startswith(":"):
continue
decoded_chunk = chunk.strip().removeprefix("data:").lstrip()
if decoded_chunk == "[DONE]": # Some provider returns "data: [DONE]"
continue
try:
chunk_json: dict = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
yield create_final_llm_result_chunk(
id=message_id,
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered.",
usage=usage,
)
break
# handle the error here. for issue #11629
if chunk_json.get("error") and chunk_json.get("choices") is None:
raise ValueError(chunk_json.get("error"))
if chunk_json:
if u := chunk_json.get("usage"):
usage = u
if not chunk_json or len(chunk_json["choices"]) == 0:
continue
choice = chunk_json["choices"][0]
finish_reason = chunk_json["choices"][0].get("finish_reason")
message_id = chunk_json.get("id")
chunk_index += 1
if "delta" in choice:
delta = choice["delta"]
is_reasoning = delta.get("reasoning_content")
delta_content = delta.get("content") or delta.get("reasoning_content")
assistant_message_tool_calls = None
if "tool_calls" in delta and credentials.get("function_calling_type", "no_call") == "tool_call":
assistant_message_tool_calls = delta.get("tool_calls", None)
elif (
"function_call" in delta
and credentials.get("function_calling_type", "no_call") == "function_call"
):
assistant_message_tool_calls = [
{"id": "tool_call_id", "type": "function", "function": delta.get("function_call", {})}
]
# assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if assistant_message_tool_calls:
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
increase_tool_call(tool_calls)
if delta_content is None or delta_content == "":
continue
# Add markdown quote markers for reasoning content
if is_reasoning:
if not is_reasoning_started:
delta_content = "> 💭 " + delta_content
is_reasoning_started = True
elif "\n\n" in delta_content:
delta_content = delta_content.replace("\n\n", "\n> ")
elif "\n" in delta_content:
delta_content = delta_content.replace("\n", "\n> ")
elif is_reasoning_started:
# If we were in reasoning mode but now getting regular content,
# add \n\n to close the reasoning block
delta_content = "\n\n" + delta_content
is_reasoning_started = False
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta_content,
)
# reset tool calls
tool_calls = []
full_assistant_content += delta_content
elif "text" in choice:
choice_text = choice.get("text", "")
if choice_text == "":
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(content=choice_text)
full_assistant_content += choice_text
else:
continue
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=assistant_prompt_message,
),
)
chunk_index += 1
if tools_calls:
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=AssistantPromptMessage(tool_calls=tools_calls, content=""),
),
)
yield create_final_llm_result_chunk(
id=message_id,
index=chunk_index,
message=AssistantPromptMessage(content=""),
finish_reason=finish_reason,
usage=usage,
)

View File

@ -1,5 +1,6 @@
import json
import logging
import re
from collections.abc import Generator
from decimal import Decimal
from typing import Optional, Union, cast
@ -515,6 +516,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
if "delta" in choice:
delta = choice["delta"]
delta_content = delta.get("content")
if not delta_content:
delta_content = ""
if not is_reasoning_started_tag and "<think>" in delta_content:
is_reasoning_started_tag = True
@ -523,20 +526,21 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
delta_content = delta_content.replace("</think>", "") + "\n\n"
is_reasoning_started_tag = False
elif is_reasoning_started_tag:
if "\n\n" in delta_content:
delta_content = delta_content.replace("\n\n", "\n> ")
elif "\n" in delta_content:
delta_content = delta_content.replace("\n", "\n> ")
if "\n" in delta_content:
delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
reasoning_content = delta.get("reasoning_content")
if reasoning_content:
if is_reasoning_started and not reasoning_content and not delta_content:
delta_content = ""
elif reasoning_content:
if not is_reasoning_started:
delta_content = "> 💭 " + reasoning_content
is_reasoning_started = True
elif "\n\n" in delta_content:
delta_content = reasoning_content.replace("\n\n", "\n> ")
elif "\n" in delta_content:
delta_content = reasoning_content.replace("\n", "\n> ")
else:
delta_content = reasoning_content
if "\n" in delta_content:
delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
elif is_reasoning_started:
# If we were in reasoning mode but now getting regular content,
# add \n\n to close the reasoning block

View File

@ -1,13 +1,9 @@
import json
from collections.abc import Generator
from typing import Optional, Union
import requests
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
)
@ -96,208 +92,3 @@ class SiliconflowLargeLanguageModel(OAIAPICompatLargeLanguageModel):
),
],
)
def _handle_generate_stream_response(
self, model: str, credentials: dict, response: requests.Response, prompt_messages: list[PromptMessage]
) -> Generator:
"""
Handle llm stream response
:param model: model name
:param credentials: model credentials
:param response: streamed response
:param prompt_messages: prompt messages
:return: llm response chunk generator
"""
full_assistant_content = ""
chunk_index = 0
is_reasoning_started = False # Add flag to track reasoning state
def create_final_llm_result_chunk(
id: Optional[str], index: int, message: AssistantPromptMessage, finish_reason: str, usage: dict
) -> LLMResultChunk:
# calculate num tokens
prompt_tokens = usage and usage.get("prompt_tokens")
if prompt_tokens is None:
prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
completion_tokens = usage and usage.get("completion_tokens")
if completion_tokens is None:
completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
return LLMResultChunk(
id=id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
)
# delimiter for stream response, need unicode_escape
import codecs
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
delimiter = codecs.decode(delimiter, "unicode_escape")
tools_calls: list[AssistantPromptMessage.ToolCall] = []
def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
def get_tool_call(tool_call_id: str):
if not tool_call_id:
return tools_calls[-1]
tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
if tool_call is None:
tool_call = AssistantPromptMessage.ToolCall(
id=tool_call_id,
type="function",
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
)
tools_calls.append(tool_call)
return tool_call
for new_tool_call in new_tool_calls:
# get tool call
tool_call = get_tool_call(new_tool_call.function.name)
# update tool call
if new_tool_call.id:
tool_call.id = new_tool_call.id
if new_tool_call.type:
tool_call.type = new_tool_call.type
if new_tool_call.function.name:
tool_call.function.name = new_tool_call.function.name
if new_tool_call.function.arguments:
tool_call.function.arguments += new_tool_call.function.arguments
finish_reason = None # The default value of finish_reason is None
message_id, usage = None, None
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
chunk = chunk.strip()
if chunk:
# ignore sse comments
if chunk.startswith(":"):
continue
decoded_chunk = chunk.strip().removeprefix("data:").lstrip()
if decoded_chunk == "[DONE]": # Some provider returns "data: [DONE]"
continue
try:
chunk_json: dict = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
yield create_final_llm_result_chunk(
id=message_id,
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered.",
usage=usage,
)
break
# handle the error here. for issue #11629
if chunk_json.get("error") and chunk_json.get("choices") is None:
raise ValueError(chunk_json.get("error"))
if chunk_json:
if u := chunk_json.get("usage"):
usage = u
if not chunk_json or len(chunk_json["choices"]) == 0:
continue
choice = chunk_json["choices"][0]
finish_reason = chunk_json["choices"][0].get("finish_reason")
message_id = chunk_json.get("id")
chunk_index += 1
if "delta" in choice:
delta = choice["delta"]
delta_content = delta.get("content")
assistant_message_tool_calls = None
if "tool_calls" in delta and credentials.get("function_calling_type", "no_call") == "tool_call":
assistant_message_tool_calls = delta.get("tool_calls", None)
elif (
"function_call" in delta
and credentials.get("function_calling_type", "no_call") == "function_call"
):
assistant_message_tool_calls = [
{"id": "tool_call_id", "type": "function", "function": delta.get("function_call", {})}
]
# assistant_message_function_call = delta.delta.function_call
# extract tool calls from response
if assistant_message_tool_calls:
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
increase_tool_call(tool_calls)
if delta_content is None or delta_content == "":
continue
# Check for think tags
if "<think>" in delta_content:
is_reasoning_started = True
# Remove <think> tag and add markdown quote
delta_content = "> 💭 " + delta_content.replace("<think>", "")
elif "</think>" in delta_content:
# Remove </think> tag and add newlines to end quote block
delta_content = delta_content.replace("</think>", "") + "\n\n"
is_reasoning_started = False
elif is_reasoning_started:
# Add quote markers for content within thinking block
if "\n\n" in delta_content:
delta_content = delta_content.replace("\n\n", "\n> ")
elif "\n" in delta_content:
delta_content = delta_content.replace("\n", "\n> ")
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta_content,
)
# reset tool calls
tool_calls = []
full_assistant_content += delta_content
elif "text" in choice:
choice_text = choice.get("text", "")
if choice_text == "":
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(content=choice_text)
full_assistant_content += choice_text
else:
continue
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=assistant_prompt_message,
),
)
chunk_index += 1
if tools_calls:
yield LLMResultChunk(
id=message_id,
model=model,
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=chunk_index,
message=AssistantPromptMessage(tool_calls=tools_calls, content=""),
),
)
yield create_final_llm_result_chunk(
id=message_id,
index=chunk_index,
message=AssistantPromptMessage(content=""),
finish_reason=finish_reason,
usage=usage,
)

View File

@ -1,4 +1,5 @@
import logging
import re
from collections.abc import Generator
from typing import Optional
@ -251,25 +252,23 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
for chunk in chunks:
content = ""
if chunk.choices:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
delta_content = ""
delta = chunk.choices[0].delta
if is_reasoning_started and not hasattr(delta, "reasoning_content") and not delta.content:
content = ""
elif hasattr(delta, "reasoning_content"):
if not is_reasoning_started:
is_reasoning_started = True
delta_content = "> 💭 " + chunk.choices[0].delta.reasoning_content
content = "> 💭 " + delta.reasoning_content
else:
delta_content = chunk.choices[0].delta.reasoning_content
content = delta.reasoning_content
if "\n\n" in delta_content:
delta_content = delta_content.replace("\n\n", "\n> ")
elif "\n" in delta_content:
delta_content = delta_content.replace("\n", "\n> ")
content = delta_content
if "\n" in content:
content = re.sub(r"\n(?!(>|\n))", "\n> ", content)
elif is_reasoning_started:
content = "\n\n" + chunk.choices[0].delta.content
content = "\n\n" + delta.content
is_reasoning_started = False
else:
content = chunk.choices[0].delta.content
content = delta.content
yield LLMResultChunk(
model=model,