External knowledge api
This commit is contained in:
parent
19c526120c
commit
ed92c90a40
@ -5,6 +5,7 @@ from pydantic import Field, NonNegativeInt, PositiveFloat, PositiveInt, computed
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
from configs.middleware.cache.redis_config import RedisConfig
|
||||
from configs.middleware.external.bedrock_config import BedrockConfig
|
||||
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
|
||||
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
|
||||
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
|
||||
@ -221,5 +222,6 @@ class MiddlewareConfig(
|
||||
TiDBVectorConfig,
|
||||
WeaviateConfig,
|
||||
ElasticsearchConfig,
|
||||
BedrockConfig,
|
||||
):
|
||||
pass
|
||||
|
19
api/configs/middleware/external/bedrock_config.py
vendored
Normal file
19
api/configs/middleware/external/bedrock_config.py
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field, PositiveInt
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
|
||||
class BedrockConfig(BaseSettings):
|
||||
"""
|
||||
bedrock configs
|
||||
"""
|
||||
AWS_SECRET_ACCESS_KEY: Optional[str] = Field(
|
||||
description="AWS secret access key",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AWS_ACCESS_KEY_ID: Optional[str] = Field(
|
||||
description="AWS secret access id",
|
||||
default=None,
|
||||
)
|
@ -231,7 +231,9 @@ class ExternalDatasetCreateApi(Resource):
|
||||
help="name is required. Name must be between 1 to 100 characters.",
|
||||
type=_validate_name,
|
||||
)
|
||||
parser.add_argument("description", type=str, required=True, nullable=True, location="json")
|
||||
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
|
||||
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -287,6 +289,7 @@ class ExternalKnowledgeHitTestingApi(Resource):
|
||||
|
||||
|
||||
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
||||
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
|
||||
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-api-template")
|
||||
api.add_resource(ExternalApiTemplateApi, "/datasets/external-api-template/<uuid:api_template_id>")
|
||||
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-api-template/<uuid:api_template_id>/use-check")
|
||||
|
@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
|
||||
for item in resource:
|
||||
dataset_retriever_resource = DatasetRetrieverResource(
|
||||
message_id=self._message_id,
|
||||
position=item.get("position"),
|
||||
position=item.get("position") or 0,
|
||||
dataset_id=item.get("dataset_id"),
|
||||
dataset_name=item.get("dataset_name"),
|
||||
document_id=item.get("document_id"),
|
||||
|
10
api/core/rag/entities/context_entities.py
Normal file
10
api/core/rag/entities/context_entities.py
Normal file
@ -0,0 +1,10 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class DocumentContext(BaseModel):
|
||||
"""
|
||||
Model class for document context.
|
||||
"""
|
||||
|
||||
content: str
|
||||
score: float
|
@ -17,6 +17,8 @@ class Document(BaseModel):
|
||||
"""
|
||||
metadata: Optional[dict] = Field(default_factory=dict)
|
||||
|
||||
provider: Optional[str] = 'dify'
|
||||
|
||||
|
||||
class BaseDocumentTransformer(ABC):
|
||||
"""Abstract base class for document transformation systems.
|
||||
|
@ -28,11 +28,16 @@ class RerankModelRunner:
|
||||
docs = []
|
||||
doc_id = []
|
||||
unique_documents = []
|
||||
for document in documents:
|
||||
dify_documents = [item for item in documents if item.provider == "dify"]
|
||||
external_documents = [item for item in documents if item.provider == "external"]
|
||||
for document in dify_documents:
|
||||
if document.metadata["doc_id"] not in doc_id:
|
||||
doc_id.append(document.metadata["doc_id"])
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
for document in external_documents:
|
||||
docs.append(document.page_content)
|
||||
unique_documents.append(document)
|
||||
|
||||
documents = unique_documents
|
||||
|
||||
@ -46,14 +51,10 @@ class RerankModelRunner:
|
||||
# format document
|
||||
rerank_document = Document(
|
||||
page_content=result.text,
|
||||
metadata={
|
||||
"doc_id": documents[result.index].metadata["doc_id"],
|
||||
"doc_hash": documents[result.index].metadata["doc_hash"],
|
||||
"document_id": documents[result.index].metadata["document_id"],
|
||||
"dataset_id": documents[result.index].metadata["dataset_id"],
|
||||
"score": result.score,
|
||||
},
|
||||
metadata=documents[result.index].metadata,
|
||||
provider=documents[result.index].provider,
|
||||
)
|
||||
rerank_document.metadata["score"] = result.score
|
||||
rerank_documents.append(rerank_document)
|
||||
|
||||
return rerank_documents
|
||||
|
@ -20,6 +20,7 @@ from core.ops.utils import measure_time
|
||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.entities.context_entities import DocumentContext
|
||||
from core.rag.models.document import Document
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
||||
@ -30,6 +31,7 @@ from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetr
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
@ -110,7 +112,7 @@ class DatasetRetrieval:
|
||||
continue
|
||||
|
||||
# pass if dataset is not available
|
||||
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
|
||||
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0 and dataset.provider != "external":
|
||||
continue
|
||||
|
||||
available_datasets.append(dataset)
|
||||
@ -146,69 +148,84 @@ class DatasetRetrieval:
|
||||
message_id,
|
||||
)
|
||||
|
||||
document_score_list = {}
|
||||
for item in all_documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
|
||||
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
retrieval_resource_list = []
|
||||
# deal with external documents
|
||||
for item in external_documents:
|
||||
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
|
||||
source = {
|
||||
"dataset_id": item.metadata.get("dataset_id"),
|
||||
"dataset_name": item.metadata.get("dataset_name"),
|
||||
"document_name": item.metadata.get("title"),
|
||||
"data_source_type": "external",
|
||||
"retriever_from": invoke_from.to_source(),
|
||||
"score": item.metadata.get("score"),
|
||||
"content": item.page_content,
|
||||
}
|
||||
retrieval_resource_list.append(source)
|
||||
document_score_list = {}
|
||||
# deal with dify documents
|
||||
if dify_documents:
|
||||
for item in dify_documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
)
|
||||
for segment in sorted_segments:
|
||||
if segment.answer:
|
||||
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
|
||||
else:
|
||||
document_context_list.append(segment.get_sign_content())
|
||||
if show_retrieve_source:
|
||||
context_list = []
|
||||
resource_number = 1
|
||||
|
||||
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
)
|
||||
for segment in sorted_segments:
|
||||
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
||||
document = DatasetDocument.query.filter(
|
||||
DatasetDocument.id == segment.document_id,
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
).first()
|
||||
if dataset and document:
|
||||
source = {
|
||||
"position": resource_number,
|
||||
"dataset_id": dataset.id,
|
||||
"dataset_name": dataset.name,
|
||||
"document_id": document.id,
|
||||
"document_name": document.name,
|
||||
"data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": invoke_from.to_source(),
|
||||
"score": document_score_list.get(segment.index_node_id, None),
|
||||
}
|
||||
if segment.answer:
|
||||
document_context_list.append(DocumentContext(content=f"question:{segment.get_sign_content()} answer:{segment.answer}", score=document_score_list.get(segment.index_node_id, None)))
|
||||
else:
|
||||
document_context_list.append(DocumentContext(content=segment.get_sign_content(), score=document_score_list.get(segment.index_node_id, None)))
|
||||
if show_retrieve_source:
|
||||
for segment in sorted_segments:
|
||||
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
||||
document = DatasetDocument.query.filter(
|
||||
DatasetDocument.id == segment.document_id,
|
||||
DatasetDocument.enabled == True,
|
||||
DatasetDocument.archived == False,
|
||||
).first()
|
||||
if dataset and document:
|
||||
source = {
|
||||
"dataset_id": dataset.id,
|
||||
"dataset_name": dataset.name,
|
||||
"document_id": document.id,
|
||||
"document_name": document.name,
|
||||
"data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": invoke_from.to_source(),
|
||||
"score": document_score_list.get(segment.index_node_id, None),
|
||||
}
|
||||
|
||||
if invoke_from.to_source() == "dev":
|
||||
source["hit_count"] = segment.hit_count
|
||||
source["word_count"] = segment.word_count
|
||||
source["segment_position"] = segment.position
|
||||
source["index_node_hash"] = segment.index_node_hash
|
||||
if segment.answer:
|
||||
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
||||
else:
|
||||
source["content"] = segment.content
|
||||
context_list.append(source)
|
||||
resource_number += 1
|
||||
if hit_callback:
|
||||
hit_callback.return_retriever_resource_info(context_list)
|
||||
|
||||
return str("\n".join(document_context_list))
|
||||
if invoke_from.to_source() == "dev":
|
||||
source["hit_count"] = segment.hit_count
|
||||
source["word_count"] = segment.word_count
|
||||
source["segment_position"] = segment.position
|
||||
source["index_node_hash"] = segment.index_node_hash
|
||||
if segment.answer:
|
||||
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
||||
else:
|
||||
source["content"] = segment.content
|
||||
retrieval_resource_list.append(source)
|
||||
if hit_callback and retrieval_resource_list:
|
||||
hit_callback.return_retriever_resource_info(retrieval_resource_list)
|
||||
if document_context_list:
|
||||
document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
|
||||
return str("\n".join([document_context.content for document_context in document_context_list]))
|
||||
return ""
|
||||
|
||||
def single_retrieve(
|
||||
@ -256,36 +273,56 @@ class DatasetRetrieval:
|
||||
# get retrieval model config
|
||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||
if dataset:
|
||||
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
||||
|
||||
# get top k
|
||||
top_k = retrieval_model_config["top_k"]
|
||||
# get retrieval method
|
||||
if dataset.indexing_technique == "economy":
|
||||
retrieval_method = "keyword_search"
|
||||
else:
|
||||
retrieval_method = retrieval_model_config["search_method"]
|
||||
# get reranking model
|
||||
reranking_model = (
|
||||
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
|
||||
)
|
||||
# get score threshold
|
||||
score_threshold = 0.0
|
||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||
if score_threshold_enabled:
|
||||
score_threshold = retrieval_model_config.get("score_threshold")
|
||||
|
||||
with measure_time() as timer:
|
||||
results = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_method,
|
||||
dataset_id=dataset.id,
|
||||
results = []
|
||||
if dataset.provider == "external":
|
||||
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
||||
weights=retrieval_model_config.get("weights", None),
|
||||
external_retrieval_parameters=dataset.retrieval_model
|
||||
)
|
||||
for external_document in external_documents:
|
||||
document = Document(
|
||||
page_content=external_document.get("content"),
|
||||
metadata=external_document.get("metadata"),
|
||||
provider="external",
|
||||
)
|
||||
document.metadata["score"] = external_document.get("score")
|
||||
document.metadata["title"] = external_document.get("title")
|
||||
document.metadata["dataset_id"] = dataset_id
|
||||
document.metadata["dataset_name"] = dataset.name
|
||||
results.append(document)
|
||||
else:
|
||||
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
||||
|
||||
# get top k
|
||||
top_k = retrieval_model_config["top_k"]
|
||||
# get retrieval method
|
||||
if dataset.indexing_technique == "economy":
|
||||
retrieval_method = "keyword_search"
|
||||
else:
|
||||
retrieval_method = retrieval_model_config["search_method"]
|
||||
# get reranking model
|
||||
reranking_model = (
|
||||
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
|
||||
)
|
||||
# get score threshold
|
||||
score_threshold = 0.0
|
||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||
if score_threshold_enabled:
|
||||
score_threshold = retrieval_model_config.get("score_threshold")
|
||||
|
||||
with measure_time() as timer:
|
||||
results = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_method,
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
score_threshold=score_threshold,
|
||||
reranking_model=reranking_model,
|
||||
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
||||
weights=retrieval_model_config.get("weights", None),
|
||||
)
|
||||
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
||||
|
||||
if results:
|
||||
@ -356,7 +393,8 @@ class DatasetRetrieval:
|
||||
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
|
||||
) -> None:
|
||||
"""Handle retrieval end."""
|
||||
for document in documents:
|
||||
dify_documents = [document for document in documents if document.provider == "dify"]
|
||||
for document in dify_documents:
|
||||
query = db.session.query(DocumentSegment).filter(
|
||||
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
||||
)
|
||||
@ -409,35 +447,54 @@ class DatasetRetrieval:
|
||||
if not dataset:
|
||||
return []
|
||||
|
||||
# get retrieval model , if the model is not setting , using default
|
||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
||||
if dataset.provider == "external":
|
||||
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset_id,
|
||||
query=query,
|
||||
external_retrieval_parameters=dataset.retrieval_model
|
||||
)
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
else:
|
||||
if top_k > 0:
|
||||
# retrieval source
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_model["search_method"],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
reranking_model=retrieval_model.get("reranking_model", None)
|
||||
if retrieval_model["reranking_enable"]
|
||||
else None,
|
||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||
weights=retrieval_model.get("weights", None),
|
||||
for external_document in external_documents:
|
||||
document = Document(
|
||||
page_content=external_document.get("content"),
|
||||
metadata=external_document.get("metadata"),
|
||||
provider="external",
|
||||
)
|
||||
document.metadata["score"] = external_document.get("score")
|
||||
document.metadata["title"] = external_document.get("title")
|
||||
document.metadata["dataset_id"] = dataset_id
|
||||
document.metadata["dataset_name"] = dataset.name
|
||||
all_documents.append(document)
|
||||
else:
|
||||
# get retrieval model , if the model is not setting , using default
|
||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||
|
||||
all_documents.extend(documents)
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
||||
)
|
||||
if documents:
|
||||
all_documents.extend(documents)
|
||||
else:
|
||||
if top_k > 0:
|
||||
# retrieval source
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_model["search_method"],
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=retrieval_model.get("top_k") or 2,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
reranking_model=retrieval_model.get("reranking_model", None)
|
||||
if retrieval_model["reranking_enable"]
|
||||
else None,
|
||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||
weights=retrieval_model.get("weights", None),
|
||||
)
|
||||
|
||||
all_documents.extend(documents)
|
||||
|
||||
def to_dataset_retriever_tool(
|
||||
self,
|
||||
|
@ -156,16 +156,34 @@ class KnowledgeRetrievalNode(BaseNode):
|
||||
weights,
|
||||
node_data.multiple_retrieval_config.reranking_enable,
|
||||
)
|
||||
|
||||
context_list = []
|
||||
if all_documents:
|
||||
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||
retrieval_resource_list = []
|
||||
# deal with external documents
|
||||
for item in external_documents:
|
||||
source = {
|
||||
"metadata": {
|
||||
"_source": "knowledge",
|
||||
"dataset_id": item.metadata.get("dataset_id"),
|
||||
"dataset_name": item.metadata.get("dataset_name"),
|
||||
"document_name": item.metadata.get("title"),
|
||||
"data_source_type": "external",
|
||||
"retriever_from": 'workflow',
|
||||
"score": item.metadata.get("score"),
|
||||
},
|
||||
"title": item.metadata.get("title"),
|
||||
"content": item.page_content,
|
||||
}
|
||||
retrieval_resource_list.append(source)
|
||||
document_score_list = {}
|
||||
# deal with dify documents
|
||||
if dify_documents:
|
||||
document_score_list = {}
|
||||
page_number_list = {}
|
||||
for item in all_documents:
|
||||
for item in dify_documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
|
||||
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
|
||||
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
@ -186,13 +204,10 @@ class KnowledgeRetrievalNode(BaseNode):
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
).first()
|
||||
|
||||
resource_number = 1
|
||||
if dataset and document:
|
||||
source = {
|
||||
"metadata": {
|
||||
"_source": "knowledge",
|
||||
"position": resource_number,
|
||||
"dataset_id": dataset.id,
|
||||
"dataset_name": dataset.name,
|
||||
"document_id": document.id,
|
||||
@ -212,9 +227,14 @@ class KnowledgeRetrievalNode(BaseNode):
|
||||
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
|
||||
else:
|
||||
source["content"] = segment.get_sign_content()
|
||||
context_list.append(source)
|
||||
resource_number += 1
|
||||
return context_list
|
||||
retrieval_resource_list.append(source)
|
||||
if retrieval_resource_list:
|
||||
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score"), reverse=True)
|
||||
position = 1
|
||||
for item in retrieval_resource_list:
|
||||
item["metadata"]["position"] = position
|
||||
position += 1
|
||||
return retrieval_resource_list
|
||||
|
||||
@classmethod
|
||||
def _extract_variable_selector_to_variable_mapping(
|
||||
|
@ -0,0 +1,48 @@
|
||||
"""update-retrieval-resource
|
||||
|
||||
Revision ID: 6af6a521a53e
|
||||
Revises: ec3df697ebbb
|
||||
Create Date: 2024-09-24 09:22:43.570120
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import models as models
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '6af6a521a53e'
|
||||
down_revision = 'ec3df697ebbb'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
|
||||
batch_op.alter_column('document_id',
|
||||
existing_type=sa.UUID(),
|
||||
nullable=True)
|
||||
batch_op.alter_column('data_source_type',
|
||||
existing_type=sa.TEXT(),
|
||||
nullable=True)
|
||||
batch_op.alter_column('segment_id',
|
||||
existing_type=sa.UUID(),
|
||||
nullable=True)
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
|
||||
batch_op.alter_column('segment_id',
|
||||
existing_type=sa.UUID(),
|
||||
nullable=False)
|
||||
batch_op.alter_column('data_source_type',
|
||||
existing_type=sa.TEXT(),
|
||||
nullable=False)
|
||||
batch_op.alter_column('document_id',
|
||||
existing_type=sa.UUID(),
|
||||
nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
@ -72,6 +72,15 @@ class Dataset(db.Model):
|
||||
def index_struct_dict(self):
|
||||
return json.loads(self.index_struct) if self.index_struct else None
|
||||
|
||||
@property
|
||||
def external_retrieval_model(self):
|
||||
|
||||
default_retrieval_model = {
|
||||
"top_k": 2,
|
||||
"score_threshold": .0,
|
||||
}
|
||||
return self.retrieval_model or default_retrieval_model
|
||||
|
||||
@property
|
||||
def created_by_account(self):
|
||||
return db.session.get(Account, self.created_by)
|
||||
|
@ -1422,10 +1422,10 @@ class DatasetRetrieverResource(db.Model):
|
||||
position = db.Column(db.Integer, nullable=False)
|
||||
dataset_id = db.Column(StringUUID, nullable=False)
|
||||
dataset_name = db.Column(db.Text, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=False)
|
||||
document_id = db.Column(StringUUID, nullable=True)
|
||||
document_name = db.Column(db.Text, nullable=False)
|
||||
data_source_type = db.Column(db.Text, nullable=False)
|
||||
segment_id = db.Column(StringUUID, nullable=False)
|
||||
data_source_type = db.Column(db.Text, nullable=True)
|
||||
segment_id = db.Column(StringUUID, nullable=True)
|
||||
score = db.Column(db.Float, nullable=True)
|
||||
content = db.Column(db.Text, nullable=False)
|
||||
hit_count = db.Column(db.Integer, nullable=True)
|
||||
|
@ -7,6 +7,7 @@ from typing import Any, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from configs import dify_config
|
||||
from core.helper import ssrf_proxy
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import (
|
||||
@ -243,6 +244,7 @@ class ExternalDatasetService:
|
||||
name=args.get("name"),
|
||||
description=args.get("description", ""),
|
||||
provider="external",
|
||||
retrieval_model=args.get("external_retrieval_model"),
|
||||
created_by=user_id,
|
||||
)
|
||||
|
||||
@ -305,9 +307,9 @@ class ExternalDatasetService:
|
||||
):
|
||||
client = boto3.client(
|
||||
"bedrock-agent-runtime",
|
||||
aws_secret_access_key='',
|
||||
aws_access_key_id='',
|
||||
region_name='',
|
||||
aws_secret_access_key=dify_config.AWS_SECRET_ACCESS_KEY,
|
||||
aws_access_key_id=dify_config.AWS_ACCESS_KEY_ID,
|
||||
region_name='us-east-1',
|
||||
)
|
||||
response = client.retrieve(
|
||||
knowledgeBaseId=external_knowledge_id,
|
||||
@ -326,6 +328,8 @@ class ExternalDatasetService:
|
||||
if response.get("retrievalResults"):
|
||||
retrieval_results = response.get("retrievalResults")
|
||||
for retrieval_result in retrieval_results:
|
||||
if retrieval_result.get("score") < score_threshold:
|
||||
continue
|
||||
result = {
|
||||
"metadata": retrieval_result.get("metadata"),
|
||||
"score": retrieval_result.get("score"),
|
||||
|
Loading…
Reference in New Issue
Block a user