External knowledge api

This commit is contained in:
jyong 2024-09-24 17:52:16 +08:00
parent 19c526120c
commit ed92c90a40
13 changed files with 318 additions and 143 deletions

View File

@ -5,6 +5,7 @@ from pydantic import Field, NonNegativeInt, PositiveFloat, PositiveInt, computed
from pydantic_settings import BaseSettings
from configs.middleware.cache.redis_config import RedisConfig
from configs.middleware.external.bedrock_config import BedrockConfig
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
@ -221,5 +222,6 @@ class MiddlewareConfig(
TiDBVectorConfig,
WeaviateConfig,
ElasticsearchConfig,
BedrockConfig,
):
pass

View File

@ -0,0 +1,19 @@
from typing import Optional
from pydantic import Field, PositiveInt
from pydantic_settings import BaseSettings
class BedrockConfig(BaseSettings):
"""
bedrock configs
"""
AWS_SECRET_ACCESS_KEY: Optional[str] = Field(
description="AWS secret access key",
default=None,
)
AWS_ACCESS_KEY_ID: Optional[str] = Field(
description="AWS secret access id",
default=None,
)

View File

@ -231,7 +231,9 @@ class ExternalDatasetCreateApi(Resource):
help="name is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument("description", type=str, required=True, nullable=True, location="json")
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
@ -287,6 +289,7 @@ class ExternalKnowledgeHitTestingApi(Resource):
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-api-template")
api.add_resource(ExternalApiTemplateApi, "/datasets/external-api-template/<uuid:api_template_id>")
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-api-template/<uuid:api_template_id>/use-check")

View File

@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self._message_id,
position=item.get("position"),
position=item.get("position") or 0,
dataset_id=item.get("dataset_id"),
dataset_name=item.get("dataset_name"),
document_id=item.get("document_id"),

View File

@ -0,0 +1,10 @@
from pydantic import BaseModel
class DocumentContext(BaseModel):
"""
Model class for document context.
"""
content: str
score: float

View File

@ -17,6 +17,8 @@ class Document(BaseModel):
"""
metadata: Optional[dict] = Field(default_factory=dict)
provider: Optional[str] = 'dify'
class BaseDocumentTransformer(ABC):
"""Abstract base class for document transformation systems.

View File

@ -28,11 +28,16 @@ class RerankModelRunner:
docs = []
doc_id = []
unique_documents = []
for document in documents:
dify_documents = [item for item in documents if item.provider == "dify"]
external_documents = [item for item in documents if item.provider == "external"]
for document in dify_documents:
if document.metadata["doc_id"] not in doc_id:
doc_id.append(document.metadata["doc_id"])
docs.append(document.page_content)
unique_documents.append(document)
for document in external_documents:
docs.append(document.page_content)
unique_documents.append(document)
documents = unique_documents
@ -46,14 +51,10 @@ class RerankModelRunner:
# format document
rerank_document = Document(
page_content=result.text,
metadata={
"doc_id": documents[result.index].metadata["doc_id"],
"doc_hash": documents[result.index].metadata["doc_hash"],
"document_id": documents[result.index].metadata["document_id"],
"dataset_id": documents[result.index].metadata["dataset_id"],
"score": result.score,
},
metadata=documents[result.index].metadata,
provider=documents[result.index].provider,
)
rerank_document.metadata["score"] = result.score
rerank_documents.append(rerank_document)
return rerank_documents

View File

@ -20,6 +20,7 @@ from core.ops.utils import measure_time
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
@ -30,6 +31,7 @@ from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetr
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
@ -110,7 +112,7 @@ class DatasetRetrieval:
continue
# pass if dataset is not available
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0 and dataset.provider != "external":
continue
available_datasets.append(dataset)
@ -146,69 +148,84 @@ class DatasetRetrieval:
message_id,
)
document_score_list = {}
for item in all_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
dify_documents = [item for item in all_documents if item.provider == "dify"]
external_documents = [item for item in all_documents if item.provider == "external"]
document_context_list = []
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.completed_at.isnot(None),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
retrieval_resource_list = []
# deal with external documents
for item in external_documents:
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
source = {
"dataset_id": item.metadata.get("dataset_id"),
"dataset_name": item.metadata.get("dataset_name"),
"document_name": item.metadata.get("title"),
"data_source_type": "external",
"retriever_from": invoke_from.to_source(),
"score": item.metadata.get("score"),
"content": item.page_content,
}
retrieval_resource_list.append(source)
document_score_list = {}
# deal with dify documents
if dify_documents:
for item in dify_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
if segment.answer:
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
else:
document_context_list.append(segment.get_sign_content())
if show_retrieve_source:
context_list = []
resource_number = 1
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, None),
}
if segment.answer:
document_context_list.append(DocumentContext(content=f"question:{segment.get_sign_content()} answer:{segment.answer}", score=document_score_list.get(segment.index_node_id, None)))
else:
document_context_list.append(DocumentContext(content=segment.get_sign_content(), score=document_score_list.get(segment.index_node_id, None)))
if show_retrieve_source:
for segment in sorted_segments:
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, None),
}
if invoke_from.to_source() == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
context_list.append(source)
resource_number += 1
if hit_callback:
hit_callback.return_retriever_resource_info(context_list)
return str("\n".join(document_context_list))
if invoke_from.to_source() == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
retrieval_resource_list.append(source)
if hit_callback and retrieval_resource_list:
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""
def single_retrieve(
@ -256,36 +273,56 @@ class DatasetRetrieval:
# get retrieval model config
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if dataset:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get retrieval method
if dataset.indexing_technique == "economy":
retrieval_method = "keyword_search"
else:
retrieval_method = retrieval_model_config["search_method"]
# get reranking model
reranking_model = (
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
)
# get score threshold
score_threshold = 0.0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrieval_method=retrieval_method,
dataset_id=dataset.id,
results = []
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
external_retrieval_parameters=dataset.retrieval_model
)
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
results.append(document)
else:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get retrieval method
if dataset.indexing_technique == "economy":
retrieval_method = "keyword_search"
else:
retrieval_method = retrieval_model_config["search_method"]
# get reranking model
reranking_model = (
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
)
# get score threshold
score_threshold = 0.0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrieval_method=retrieval_method,
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
)
self._on_query(query, [dataset_id], app_id, user_from, user_id)
if results:
@ -356,7 +393,8 @@ class DatasetRetrieval:
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
) -> None:
"""Handle retrieval end."""
for document in documents:
dify_documents = [document for document in documents if document.provider == "dify"]
for document in dify_documents:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
@ -409,35 +447,54 @@ class DatasetRetrieval:
if not dataset:
return []
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
external_retrieval_parameters=dataset.retrieval_model
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
all_documents.append(document)
else:
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model or default_retrieval_model
all_documents.extend(documents)
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
all_documents.extend(documents)
def to_dataset_retriever_tool(
self,

View File

@ -156,16 +156,34 @@ class KnowledgeRetrievalNode(BaseNode):
weights,
node_data.multiple_retrieval_config.reranking_enable,
)
context_list = []
if all_documents:
dify_documents = [item for item in all_documents if item.provider == "dify"]
external_documents = [item for item in all_documents if item.provider == "external"]
retrieval_resource_list = []
# deal with external documents
for item in external_documents:
source = {
"metadata": {
"_source": "knowledge",
"dataset_id": item.metadata.get("dataset_id"),
"dataset_name": item.metadata.get("dataset_name"),
"document_name": item.metadata.get("title"),
"data_source_type": "external",
"retriever_from": 'workflow',
"score": item.metadata.get("score"),
},
"title": item.metadata.get("title"),
"content": item.page_content,
}
retrieval_resource_list.append(source)
document_score_list = {}
# deal with dify documents
if dify_documents:
document_score_list = {}
page_number_list = {}
for item in all_documents:
for item in dify_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.completed_at.isnot(None),
@ -186,13 +204,10 @@ class KnowledgeRetrievalNode(BaseNode):
Document.enabled == True,
Document.archived == False,
).first()
resource_number = 1
if dataset and document:
source = {
"metadata": {
"_source": "knowledge",
"position": resource_number,
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
@ -212,9 +227,14 @@ class KnowledgeRetrievalNode(BaseNode):
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
else:
source["content"] = segment.get_sign_content()
context_list.append(source)
resource_number += 1
return context_list
retrieval_resource_list.append(source)
if retrieval_resource_list:
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score"), reverse=True)
position = 1
for item in retrieval_resource_list:
item["metadata"]["position"] = position
position += 1
return retrieval_resource_list
@classmethod
def _extract_variable_selector_to_variable_mapping(

View File

@ -0,0 +1,48 @@
"""update-retrieval-resource
Revision ID: 6af6a521a53e
Revises: ec3df697ebbb
Create Date: 2024-09-24 09:22:43.570120
"""
from alembic import op
import models as models
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '6af6a521a53e'
down_revision = 'ec3df697ebbb'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
batch_op.alter_column('document_id',
existing_type=sa.UUID(),
nullable=True)
batch_op.alter_column('data_source_type',
existing_type=sa.TEXT(),
nullable=True)
batch_op.alter_column('segment_id',
existing_type=sa.UUID(),
nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
batch_op.alter_column('segment_id',
existing_type=sa.UUID(),
nullable=False)
batch_op.alter_column('data_source_type',
existing_type=sa.TEXT(),
nullable=False)
batch_op.alter_column('document_id',
existing_type=sa.UUID(),
nullable=False)
# ### end Alembic commands ###

View File

@ -72,6 +72,15 @@ class Dataset(db.Model):
def index_struct_dict(self):
return json.loads(self.index_struct) if self.index_struct else None
@property
def external_retrieval_model(self):
default_retrieval_model = {
"top_k": 2,
"score_threshold": .0,
}
return self.retrieval_model or default_retrieval_model
@property
def created_by_account(self):
return db.session.get(Account, self.created_by)

View File

@ -1422,10 +1422,10 @@ class DatasetRetrieverResource(db.Model):
position = db.Column(db.Integer, nullable=False)
dataset_id = db.Column(StringUUID, nullable=False)
dataset_name = db.Column(db.Text, nullable=False)
document_id = db.Column(StringUUID, nullable=False)
document_id = db.Column(StringUUID, nullable=True)
document_name = db.Column(db.Text, nullable=False)
data_source_type = db.Column(db.Text, nullable=False)
segment_id = db.Column(StringUUID, nullable=False)
data_source_type = db.Column(db.Text, nullable=True)
segment_id = db.Column(StringUUID, nullable=True)
score = db.Column(db.Float, nullable=True)
content = db.Column(db.Text, nullable=False)
hit_count = db.Column(db.Integer, nullable=True)

View File

@ -7,6 +7,7 @@ from typing import Any, Optional, Union
import httpx
from configs import dify_config
from core.helper import ssrf_proxy
from extensions.ext_database import db
from models.dataset import (
@ -243,6 +244,7 @@ class ExternalDatasetService:
name=args.get("name"),
description=args.get("description", ""),
provider="external",
retrieval_model=args.get("external_retrieval_model"),
created_by=user_id,
)
@ -305,9 +307,9 @@ class ExternalDatasetService:
):
client = boto3.client(
"bedrock-agent-runtime",
aws_secret_access_key='',
aws_access_key_id='',
region_name='',
aws_secret_access_key=dify_config.AWS_SECRET_ACCESS_KEY,
aws_access_key_id=dify_config.AWS_ACCESS_KEY_ID,
region_name='us-east-1',
)
response = client.retrieve(
knowledgeBaseId=external_knowledge_id,
@ -326,6 +328,8 @@ class ExternalDatasetService:
if response.get("retrievalResults"):
retrieval_results = response.get("retrievalResults")
for retrieval_result in retrieval_results:
if retrieval_result.get("score") < score_threshold:
continue
result = {
"metadata": retrieval_result.get("metadata"),
"score": retrieval_result.get("score"),