External knowledge api
This commit is contained in:
parent
19c526120c
commit
ed92c90a40
@ -5,6 +5,7 @@ from pydantic import Field, NonNegativeInt, PositiveFloat, PositiveInt, computed
|
|||||||
from pydantic_settings import BaseSettings
|
from pydantic_settings import BaseSettings
|
||||||
|
|
||||||
from configs.middleware.cache.redis_config import RedisConfig
|
from configs.middleware.cache.redis_config import RedisConfig
|
||||||
|
from configs.middleware.external.bedrock_config import BedrockConfig
|
||||||
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
|
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
|
||||||
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
|
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
|
||||||
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
|
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
|
||||||
@ -221,5 +222,6 @@ class MiddlewareConfig(
|
|||||||
TiDBVectorConfig,
|
TiDBVectorConfig,
|
||||||
WeaviateConfig,
|
WeaviateConfig,
|
||||||
ElasticsearchConfig,
|
ElasticsearchConfig,
|
||||||
|
BedrockConfig,
|
||||||
):
|
):
|
||||||
pass
|
pass
|
||||||
|
19
api/configs/middleware/external/bedrock_config.py
vendored
Normal file
19
api/configs/middleware/external/bedrock_config.py
vendored
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from pydantic import Field, PositiveInt
|
||||||
|
from pydantic_settings import BaseSettings
|
||||||
|
|
||||||
|
|
||||||
|
class BedrockConfig(BaseSettings):
|
||||||
|
"""
|
||||||
|
bedrock configs
|
||||||
|
"""
|
||||||
|
AWS_SECRET_ACCESS_KEY: Optional[str] = Field(
|
||||||
|
description="AWS secret access key",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
AWS_ACCESS_KEY_ID: Optional[str] = Field(
|
||||||
|
description="AWS secret access id",
|
||||||
|
default=None,
|
||||||
|
)
|
@ -231,7 +231,9 @@ class ExternalDatasetCreateApi(Resource):
|
|||||||
help="name is required. Name must be between 1 to 100 characters.",
|
help="name is required. Name must be between 1 to 100 characters.",
|
||||||
type=_validate_name,
|
type=_validate_name,
|
||||||
)
|
)
|
||||||
parser.add_argument("description", type=str, required=True, nullable=True, location="json")
|
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
|
||||||
|
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
|
||||||
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@ -287,6 +289,7 @@ class ExternalKnowledgeHitTestingApi(Resource):
|
|||||||
|
|
||||||
|
|
||||||
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
||||||
|
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
|
||||||
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-api-template")
|
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-api-template")
|
||||||
api.add_resource(ExternalApiTemplateApi, "/datasets/external-api-template/<uuid:api_template_id>")
|
api.add_resource(ExternalApiTemplateApi, "/datasets/external-api-template/<uuid:api_template_id>")
|
||||||
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-api-template/<uuid:api_template_id>/use-check")
|
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-api-template/<uuid:api_template_id>/use-check")
|
||||||
|
@ -59,7 +59,7 @@ class DatasetIndexToolCallbackHandler:
|
|||||||
for item in resource:
|
for item in resource:
|
||||||
dataset_retriever_resource = DatasetRetrieverResource(
|
dataset_retriever_resource = DatasetRetrieverResource(
|
||||||
message_id=self._message_id,
|
message_id=self._message_id,
|
||||||
position=item.get("position"),
|
position=item.get("position") or 0,
|
||||||
dataset_id=item.get("dataset_id"),
|
dataset_id=item.get("dataset_id"),
|
||||||
dataset_name=item.get("dataset_name"),
|
dataset_name=item.get("dataset_name"),
|
||||||
document_id=item.get("document_id"),
|
document_id=item.get("document_id"),
|
||||||
|
10
api/core/rag/entities/context_entities.py
Normal file
10
api/core/rag/entities/context_entities.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
class DocumentContext(BaseModel):
|
||||||
|
"""
|
||||||
|
Model class for document context.
|
||||||
|
"""
|
||||||
|
|
||||||
|
content: str
|
||||||
|
score: float
|
@ -17,6 +17,8 @@ class Document(BaseModel):
|
|||||||
"""
|
"""
|
||||||
metadata: Optional[dict] = Field(default_factory=dict)
|
metadata: Optional[dict] = Field(default_factory=dict)
|
||||||
|
|
||||||
|
provider: Optional[str] = 'dify'
|
||||||
|
|
||||||
|
|
||||||
class BaseDocumentTransformer(ABC):
|
class BaseDocumentTransformer(ABC):
|
||||||
"""Abstract base class for document transformation systems.
|
"""Abstract base class for document transformation systems.
|
||||||
|
@ -28,11 +28,16 @@ class RerankModelRunner:
|
|||||||
docs = []
|
docs = []
|
||||||
doc_id = []
|
doc_id = []
|
||||||
unique_documents = []
|
unique_documents = []
|
||||||
for document in documents:
|
dify_documents = [item for item in documents if item.provider == "dify"]
|
||||||
|
external_documents = [item for item in documents if item.provider == "external"]
|
||||||
|
for document in dify_documents:
|
||||||
if document.metadata["doc_id"] not in doc_id:
|
if document.metadata["doc_id"] not in doc_id:
|
||||||
doc_id.append(document.metadata["doc_id"])
|
doc_id.append(document.metadata["doc_id"])
|
||||||
docs.append(document.page_content)
|
docs.append(document.page_content)
|
||||||
unique_documents.append(document)
|
unique_documents.append(document)
|
||||||
|
for document in external_documents:
|
||||||
|
docs.append(document.page_content)
|
||||||
|
unique_documents.append(document)
|
||||||
|
|
||||||
documents = unique_documents
|
documents = unique_documents
|
||||||
|
|
||||||
@ -46,14 +51,10 @@ class RerankModelRunner:
|
|||||||
# format document
|
# format document
|
||||||
rerank_document = Document(
|
rerank_document = Document(
|
||||||
page_content=result.text,
|
page_content=result.text,
|
||||||
metadata={
|
metadata=documents[result.index].metadata,
|
||||||
"doc_id": documents[result.index].metadata["doc_id"],
|
provider=documents[result.index].provider,
|
||||||
"doc_hash": documents[result.index].metadata["doc_hash"],
|
|
||||||
"document_id": documents[result.index].metadata["document_id"],
|
|
||||||
"dataset_id": documents[result.index].metadata["dataset_id"],
|
|
||||||
"score": result.score,
|
|
||||||
},
|
|
||||||
)
|
)
|
||||||
|
rerank_document.metadata["score"] = result.score
|
||||||
rerank_documents.append(rerank_document)
|
rerank_documents.append(rerank_document)
|
||||||
|
|
||||||
return rerank_documents
|
return rerank_documents
|
||||||
|
@ -20,6 +20,7 @@ from core.ops.utils import measure_time
|
|||||||
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
||||||
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
||||||
from core.rag.datasource.retrieval_service import RetrievalService
|
from core.rag.datasource.retrieval_service import RetrievalService
|
||||||
|
from core.rag.entities.context_entities import DocumentContext
|
||||||
from core.rag.models.document import Document
|
from core.rag.models.document import Document
|
||||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||||
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
||||||
@ -30,6 +31,7 @@ from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetr
|
|||||||
from extensions.ext_database import db
|
from extensions.ext_database import db
|
||||||
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
||||||
from models.dataset import Document as DatasetDocument
|
from models.dataset import Document as DatasetDocument
|
||||||
|
from services.external_knowledge_service import ExternalDatasetService
|
||||||
|
|
||||||
default_retrieval_model = {
|
default_retrieval_model = {
|
||||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||||
@ -110,7 +112,7 @@ class DatasetRetrieval:
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# pass if dataset is not available
|
# pass if dataset is not available
|
||||||
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
|
if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0 and dataset.provider != "external":
|
||||||
continue
|
continue
|
||||||
|
|
||||||
available_datasets.append(dataset)
|
available_datasets.append(dataset)
|
||||||
@ -146,69 +148,84 @@ class DatasetRetrieval:
|
|||||||
message_id,
|
message_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
document_score_list = {}
|
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||||
for item in all_documents:
|
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||||
if item.metadata.get("score"):
|
|
||||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
||||||
|
|
||||||
document_context_list = []
|
document_context_list = []
|
||||||
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
|
retrieval_resource_list = []
|
||||||
segments = DocumentSegment.query.filter(
|
# deal with external documents
|
||||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
for item in external_documents:
|
||||||
DocumentSegment.completed_at.isnot(None),
|
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
|
||||||
DocumentSegment.status == "completed",
|
source = {
|
||||||
DocumentSegment.enabled == True,
|
"dataset_id": item.metadata.get("dataset_id"),
|
||||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
"dataset_name": item.metadata.get("dataset_name"),
|
||||||
).all()
|
"document_name": item.metadata.get("title"),
|
||||||
|
"data_source_type": "external",
|
||||||
|
"retriever_from": invoke_from.to_source(),
|
||||||
|
"score": item.metadata.get("score"),
|
||||||
|
"content": item.page_content,
|
||||||
|
}
|
||||||
|
retrieval_resource_list.append(source)
|
||||||
|
document_score_list = {}
|
||||||
|
# deal with dify documents
|
||||||
|
if dify_documents:
|
||||||
|
for item in dify_documents:
|
||||||
|
if item.metadata.get("score"):
|
||||||
|
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||||
|
|
||||||
if segments:
|
|
||||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||||
sorted_segments = sorted(
|
segments = DocumentSegment.query.filter(
|
||||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||||
)
|
DocumentSegment.status == "completed",
|
||||||
for segment in sorted_segments:
|
DocumentSegment.enabled == True,
|
||||||
if segment.answer:
|
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||||
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
|
).all()
|
||||||
else:
|
|
||||||
document_context_list.append(segment.get_sign_content())
|
if segments:
|
||||||
if show_retrieve_source:
|
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||||
context_list = []
|
sorted_segments = sorted(
|
||||||
resource_number = 1
|
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||||
|
)
|
||||||
for segment in sorted_segments:
|
for segment in sorted_segments:
|
||||||
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
if segment.answer:
|
||||||
document = DatasetDocument.query.filter(
|
document_context_list.append(DocumentContext(content=f"question:{segment.get_sign_content()} answer:{segment.answer}", score=document_score_list.get(segment.index_node_id, None)))
|
||||||
DatasetDocument.id == segment.document_id,
|
else:
|
||||||
DatasetDocument.enabled == True,
|
document_context_list.append(DocumentContext(content=segment.get_sign_content(), score=document_score_list.get(segment.index_node_id, None)))
|
||||||
DatasetDocument.archived == False,
|
if show_retrieve_source:
|
||||||
).first()
|
for segment in sorted_segments:
|
||||||
if dataset and document:
|
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
||||||
source = {
|
document = DatasetDocument.query.filter(
|
||||||
"position": resource_number,
|
DatasetDocument.id == segment.document_id,
|
||||||
"dataset_id": dataset.id,
|
DatasetDocument.enabled == True,
|
||||||
"dataset_name": dataset.name,
|
DatasetDocument.archived == False,
|
||||||
"document_id": document.id,
|
).first()
|
||||||
"document_name": document.name,
|
if dataset and document:
|
||||||
"data_source_type": document.data_source_type,
|
source = {
|
||||||
"segment_id": segment.id,
|
"dataset_id": dataset.id,
|
||||||
"retriever_from": invoke_from.to_source(),
|
"dataset_name": dataset.name,
|
||||||
"score": document_score_list.get(segment.index_node_id, None),
|
"document_id": document.id,
|
||||||
}
|
"document_name": document.name,
|
||||||
|
"data_source_type": document.data_source_type,
|
||||||
|
"segment_id": segment.id,
|
||||||
|
"retriever_from": invoke_from.to_source(),
|
||||||
|
"score": document_score_list.get(segment.index_node_id, None),
|
||||||
|
}
|
||||||
|
|
||||||
if invoke_from.to_source() == "dev":
|
if invoke_from.to_source() == "dev":
|
||||||
source["hit_count"] = segment.hit_count
|
source["hit_count"] = segment.hit_count
|
||||||
source["word_count"] = segment.word_count
|
source["word_count"] = segment.word_count
|
||||||
source["segment_position"] = segment.position
|
source["segment_position"] = segment.position
|
||||||
source["index_node_hash"] = segment.index_node_hash
|
source["index_node_hash"] = segment.index_node_hash
|
||||||
if segment.answer:
|
if segment.answer:
|
||||||
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
||||||
else:
|
else:
|
||||||
source["content"] = segment.content
|
source["content"] = segment.content
|
||||||
context_list.append(source)
|
retrieval_resource_list.append(source)
|
||||||
resource_number += 1
|
if hit_callback and retrieval_resource_list:
|
||||||
if hit_callback:
|
hit_callback.return_retriever_resource_info(retrieval_resource_list)
|
||||||
hit_callback.return_retriever_resource_info(context_list)
|
if document_context_list:
|
||||||
|
document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
|
||||||
return str("\n".join(document_context_list))
|
return str("\n".join([document_context.content for document_context in document_context_list]))
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
def single_retrieve(
|
def single_retrieve(
|
||||||
@ -256,36 +273,56 @@ class DatasetRetrieval:
|
|||||||
# get retrieval model config
|
# get retrieval model config
|
||||||
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
||||||
if dataset:
|
if dataset:
|
||||||
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
results = []
|
||||||
|
if dataset.provider == "external":
|
||||||
# get top k
|
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||||
top_k = retrieval_model_config["top_k"]
|
tenant_id=dataset.tenant_id,
|
||||||
# get retrieval method
|
dataset_id=dataset_id,
|
||||||
if dataset.indexing_technique == "economy":
|
|
||||||
retrieval_method = "keyword_search"
|
|
||||||
else:
|
|
||||||
retrieval_method = retrieval_model_config["search_method"]
|
|
||||||
# get reranking model
|
|
||||||
reranking_model = (
|
|
||||||
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
|
|
||||||
)
|
|
||||||
# get score threshold
|
|
||||||
score_threshold = 0.0
|
|
||||||
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
||||||
if score_threshold_enabled:
|
|
||||||
score_threshold = retrieval_model_config.get("score_threshold")
|
|
||||||
|
|
||||||
with measure_time() as timer:
|
|
||||||
results = RetrievalService.retrieve(
|
|
||||||
retrieval_method=retrieval_method,
|
|
||||||
dataset_id=dataset.id,
|
|
||||||
query=query,
|
query=query,
|
||||||
top_k=top_k,
|
external_retrieval_parameters=dataset.retrieval_model
|
||||||
score_threshold=score_threshold,
|
|
||||||
reranking_model=reranking_model,
|
|
||||||
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
|
||||||
weights=retrieval_model_config.get("weights", None),
|
|
||||||
)
|
)
|
||||||
|
for external_document in external_documents:
|
||||||
|
document = Document(
|
||||||
|
page_content=external_document.get("content"),
|
||||||
|
metadata=external_document.get("metadata"),
|
||||||
|
provider="external",
|
||||||
|
)
|
||||||
|
document.metadata["score"] = external_document.get("score")
|
||||||
|
document.metadata["title"] = external_document.get("title")
|
||||||
|
document.metadata["dataset_id"] = dataset_id
|
||||||
|
document.metadata["dataset_name"] = dataset.name
|
||||||
|
results.append(document)
|
||||||
|
else:
|
||||||
|
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
||||||
|
|
||||||
|
# get top k
|
||||||
|
top_k = retrieval_model_config["top_k"]
|
||||||
|
# get retrieval method
|
||||||
|
if dataset.indexing_technique == "economy":
|
||||||
|
retrieval_method = "keyword_search"
|
||||||
|
else:
|
||||||
|
retrieval_method = retrieval_model_config["search_method"]
|
||||||
|
# get reranking model
|
||||||
|
reranking_model = (
|
||||||
|
retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
|
||||||
|
)
|
||||||
|
# get score threshold
|
||||||
|
score_threshold = 0.0
|
||||||
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
||||||
|
if score_threshold_enabled:
|
||||||
|
score_threshold = retrieval_model_config.get("score_threshold")
|
||||||
|
|
||||||
|
with measure_time() as timer:
|
||||||
|
results = RetrievalService.retrieve(
|
||||||
|
retrieval_method=retrieval_method,
|
||||||
|
dataset_id=dataset.id,
|
||||||
|
query=query,
|
||||||
|
top_k=top_k,
|
||||||
|
score_threshold=score_threshold,
|
||||||
|
reranking_model=reranking_model,
|
||||||
|
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
||||||
|
weights=retrieval_model_config.get("weights", None),
|
||||||
|
)
|
||||||
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
||||||
|
|
||||||
if results:
|
if results:
|
||||||
@ -356,7 +393,8 @@ class DatasetRetrieval:
|
|||||||
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
|
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Handle retrieval end."""
|
"""Handle retrieval end."""
|
||||||
for document in documents:
|
dify_documents = [document for document in documents if document.provider == "dify"]
|
||||||
|
for document in dify_documents:
|
||||||
query = db.session.query(DocumentSegment).filter(
|
query = db.session.query(DocumentSegment).filter(
|
||||||
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
||||||
)
|
)
|
||||||
@ -409,35 +447,54 @@ class DatasetRetrieval:
|
|||||||
if not dataset:
|
if not dataset:
|
||||||
return []
|
return []
|
||||||
|
|
||||||
# get retrieval model , if the model is not setting , using default
|
if dataset.provider == "external":
|
||||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||||
|
tenant_id=dataset.tenant_id,
|
||||||
if dataset.indexing_technique == "economy":
|
dataset_id=dataset_id,
|
||||||
# use keyword table query
|
query=query,
|
||||||
documents = RetrievalService.retrieve(
|
external_retrieval_parameters=dataset.retrieval_model
|
||||||
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
|
||||||
)
|
)
|
||||||
if documents:
|
for external_document in external_documents:
|
||||||
all_documents.extend(documents)
|
document = Document(
|
||||||
else:
|
page_content=external_document.get("content"),
|
||||||
if top_k > 0:
|
metadata=external_document.get("metadata"),
|
||||||
# retrieval source
|
provider="external",
|
||||||
documents = RetrievalService.retrieve(
|
|
||||||
retrieval_method=retrieval_model["search_method"],
|
|
||||||
dataset_id=dataset.id,
|
|
||||||
query=query,
|
|
||||||
top_k=retrieval_model.get("top_k") or 2,
|
|
||||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
|
||||||
if retrieval_model["score_threshold_enabled"]
|
|
||||||
else 0.0,
|
|
||||||
reranking_model=retrieval_model.get("reranking_model", None)
|
|
||||||
if retrieval_model["reranking_enable"]
|
|
||||||
else None,
|
|
||||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
|
||||||
weights=retrieval_model.get("weights", None),
|
|
||||||
)
|
)
|
||||||
|
document.metadata["score"] = external_document.get("score")
|
||||||
|
document.metadata["title"] = external_document.get("title")
|
||||||
|
document.metadata["dataset_id"] = dataset_id
|
||||||
|
document.metadata["dataset_name"] = dataset.name
|
||||||
|
all_documents.append(document)
|
||||||
|
else:
|
||||||
|
# get retrieval model , if the model is not setting , using default
|
||||||
|
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||||
|
|
||||||
all_documents.extend(documents)
|
if dataset.indexing_technique == "economy":
|
||||||
|
# use keyword table query
|
||||||
|
documents = RetrievalService.retrieve(
|
||||||
|
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
||||||
|
)
|
||||||
|
if documents:
|
||||||
|
all_documents.extend(documents)
|
||||||
|
else:
|
||||||
|
if top_k > 0:
|
||||||
|
# retrieval source
|
||||||
|
documents = RetrievalService.retrieve(
|
||||||
|
retrieval_method=retrieval_model["search_method"],
|
||||||
|
dataset_id=dataset.id,
|
||||||
|
query=query,
|
||||||
|
top_k=retrieval_model.get("top_k") or 2,
|
||||||
|
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||||
|
if retrieval_model["score_threshold_enabled"]
|
||||||
|
else 0.0,
|
||||||
|
reranking_model=retrieval_model.get("reranking_model", None)
|
||||||
|
if retrieval_model["reranking_enable"]
|
||||||
|
else None,
|
||||||
|
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||||
|
weights=retrieval_model.get("weights", None),
|
||||||
|
)
|
||||||
|
|
||||||
|
all_documents.extend(documents)
|
||||||
|
|
||||||
def to_dataset_retriever_tool(
|
def to_dataset_retriever_tool(
|
||||||
self,
|
self,
|
||||||
|
@ -156,16 +156,34 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
weights,
|
weights,
|
||||||
node_data.multiple_retrieval_config.reranking_enable,
|
node_data.multiple_retrieval_config.reranking_enable,
|
||||||
)
|
)
|
||||||
|
dify_documents = [item for item in all_documents if item.provider == "dify"]
|
||||||
context_list = []
|
external_documents = [item for item in all_documents if item.provider == "external"]
|
||||||
if all_documents:
|
retrieval_resource_list = []
|
||||||
|
# deal with external documents
|
||||||
|
for item in external_documents:
|
||||||
|
source = {
|
||||||
|
"metadata": {
|
||||||
|
"_source": "knowledge",
|
||||||
|
"dataset_id": item.metadata.get("dataset_id"),
|
||||||
|
"dataset_name": item.metadata.get("dataset_name"),
|
||||||
|
"document_name": item.metadata.get("title"),
|
||||||
|
"data_source_type": "external",
|
||||||
|
"retriever_from": 'workflow',
|
||||||
|
"score": item.metadata.get("score"),
|
||||||
|
},
|
||||||
|
"title": item.metadata.get("title"),
|
||||||
|
"content": item.page_content,
|
||||||
|
}
|
||||||
|
retrieval_resource_list.append(source)
|
||||||
|
document_score_list = {}
|
||||||
|
# deal with dify documents
|
||||||
|
if dify_documents:
|
||||||
document_score_list = {}
|
document_score_list = {}
|
||||||
page_number_list = {}
|
for item in dify_documents:
|
||||||
for item in all_documents:
|
|
||||||
if item.metadata.get("score"):
|
if item.metadata.get("score"):
|
||||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||||
|
|
||||||
index_node_ids = [document.metadata["doc_id"] for document in all_documents]
|
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
||||||
segments = DocumentSegment.query.filter(
|
segments = DocumentSegment.query.filter(
|
||||||
DocumentSegment.dataset_id.in_(dataset_ids),
|
DocumentSegment.dataset_id.in_(dataset_ids),
|
||||||
DocumentSegment.completed_at.isnot(None),
|
DocumentSegment.completed_at.isnot(None),
|
||||||
@ -186,13 +204,10 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
Document.enabled == True,
|
Document.enabled == True,
|
||||||
Document.archived == False,
|
Document.archived == False,
|
||||||
).first()
|
).first()
|
||||||
|
|
||||||
resource_number = 1
|
|
||||||
if dataset and document:
|
if dataset and document:
|
||||||
source = {
|
source = {
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"_source": "knowledge",
|
"_source": "knowledge",
|
||||||
"position": resource_number,
|
|
||||||
"dataset_id": dataset.id,
|
"dataset_id": dataset.id,
|
||||||
"dataset_name": dataset.name,
|
"dataset_name": dataset.name,
|
||||||
"document_id": document.id,
|
"document_id": document.id,
|
||||||
@ -212,9 +227,14 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||||||
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
|
source["content"] = f"question:{segment.get_sign_content()} \nanswer:{segment.answer}"
|
||||||
else:
|
else:
|
||||||
source["content"] = segment.get_sign_content()
|
source["content"] = segment.get_sign_content()
|
||||||
context_list.append(source)
|
retrieval_resource_list.append(source)
|
||||||
resource_number += 1
|
if retrieval_resource_list:
|
||||||
return context_list
|
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score"), reverse=True)
|
||||||
|
position = 1
|
||||||
|
for item in retrieval_resource_list:
|
||||||
|
item["metadata"]["position"] = position
|
||||||
|
position += 1
|
||||||
|
return retrieval_resource_list
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _extract_variable_selector_to_variable_mapping(
|
def _extract_variable_selector_to_variable_mapping(
|
||||||
|
@ -0,0 +1,48 @@
|
|||||||
|
"""update-retrieval-resource
|
||||||
|
|
||||||
|
Revision ID: 6af6a521a53e
|
||||||
|
Revises: ec3df697ebbb
|
||||||
|
Create Date: 2024-09-24 09:22:43.570120
|
||||||
|
|
||||||
|
"""
|
||||||
|
from alembic import op
|
||||||
|
import models as models
|
||||||
|
import sqlalchemy as sa
|
||||||
|
from sqlalchemy.dialects import postgresql
|
||||||
|
|
||||||
|
# revision identifiers, used by Alembic.
|
||||||
|
revision = '6af6a521a53e'
|
||||||
|
down_revision = 'ec3df697ebbb'
|
||||||
|
branch_labels = None
|
||||||
|
depends_on = None
|
||||||
|
|
||||||
|
|
||||||
|
def upgrade():
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
|
||||||
|
batch_op.alter_column('document_id',
|
||||||
|
existing_type=sa.UUID(),
|
||||||
|
nullable=True)
|
||||||
|
batch_op.alter_column('data_source_type',
|
||||||
|
existing_type=sa.TEXT(),
|
||||||
|
nullable=True)
|
||||||
|
batch_op.alter_column('segment_id',
|
||||||
|
existing_type=sa.UUID(),
|
||||||
|
nullable=True)
|
||||||
|
# ### end Alembic commands ###
|
||||||
|
|
||||||
|
|
||||||
|
def downgrade():
|
||||||
|
# ### commands auto generated by Alembic - please adjust! ###
|
||||||
|
with op.batch_alter_table('dataset_retriever_resources', schema=None) as batch_op:
|
||||||
|
batch_op.alter_column('segment_id',
|
||||||
|
existing_type=sa.UUID(),
|
||||||
|
nullable=False)
|
||||||
|
batch_op.alter_column('data_source_type',
|
||||||
|
existing_type=sa.TEXT(),
|
||||||
|
nullable=False)
|
||||||
|
batch_op.alter_column('document_id',
|
||||||
|
existing_type=sa.UUID(),
|
||||||
|
nullable=False)
|
||||||
|
|
||||||
|
# ### end Alembic commands ###
|
@ -72,6 +72,15 @@ class Dataset(db.Model):
|
|||||||
def index_struct_dict(self):
|
def index_struct_dict(self):
|
||||||
return json.loads(self.index_struct) if self.index_struct else None
|
return json.loads(self.index_struct) if self.index_struct else None
|
||||||
|
|
||||||
|
@property
|
||||||
|
def external_retrieval_model(self):
|
||||||
|
|
||||||
|
default_retrieval_model = {
|
||||||
|
"top_k": 2,
|
||||||
|
"score_threshold": .0,
|
||||||
|
}
|
||||||
|
return self.retrieval_model or default_retrieval_model
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def created_by_account(self):
|
def created_by_account(self):
|
||||||
return db.session.get(Account, self.created_by)
|
return db.session.get(Account, self.created_by)
|
||||||
|
@ -1422,10 +1422,10 @@ class DatasetRetrieverResource(db.Model):
|
|||||||
position = db.Column(db.Integer, nullable=False)
|
position = db.Column(db.Integer, nullable=False)
|
||||||
dataset_id = db.Column(StringUUID, nullable=False)
|
dataset_id = db.Column(StringUUID, nullable=False)
|
||||||
dataset_name = db.Column(db.Text, nullable=False)
|
dataset_name = db.Column(db.Text, nullable=False)
|
||||||
document_id = db.Column(StringUUID, nullable=False)
|
document_id = db.Column(StringUUID, nullable=True)
|
||||||
document_name = db.Column(db.Text, nullable=False)
|
document_name = db.Column(db.Text, nullable=False)
|
||||||
data_source_type = db.Column(db.Text, nullable=False)
|
data_source_type = db.Column(db.Text, nullable=True)
|
||||||
segment_id = db.Column(StringUUID, nullable=False)
|
segment_id = db.Column(StringUUID, nullable=True)
|
||||||
score = db.Column(db.Float, nullable=True)
|
score = db.Column(db.Float, nullable=True)
|
||||||
content = db.Column(db.Text, nullable=False)
|
content = db.Column(db.Text, nullable=False)
|
||||||
hit_count = db.Column(db.Integer, nullable=True)
|
hit_count = db.Column(db.Integer, nullable=True)
|
||||||
|
@ -7,6 +7,7 @@ from typing import Any, Optional, Union
|
|||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
from configs import dify_config
|
||||||
from core.helper import ssrf_proxy
|
from core.helper import ssrf_proxy
|
||||||
from extensions.ext_database import db
|
from extensions.ext_database import db
|
||||||
from models.dataset import (
|
from models.dataset import (
|
||||||
@ -243,6 +244,7 @@ class ExternalDatasetService:
|
|||||||
name=args.get("name"),
|
name=args.get("name"),
|
||||||
description=args.get("description", ""),
|
description=args.get("description", ""),
|
||||||
provider="external",
|
provider="external",
|
||||||
|
retrieval_model=args.get("external_retrieval_model"),
|
||||||
created_by=user_id,
|
created_by=user_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -305,9 +307,9 @@ class ExternalDatasetService:
|
|||||||
):
|
):
|
||||||
client = boto3.client(
|
client = boto3.client(
|
||||||
"bedrock-agent-runtime",
|
"bedrock-agent-runtime",
|
||||||
aws_secret_access_key='',
|
aws_secret_access_key=dify_config.AWS_SECRET_ACCESS_KEY,
|
||||||
aws_access_key_id='',
|
aws_access_key_id=dify_config.AWS_ACCESS_KEY_ID,
|
||||||
region_name='',
|
region_name='us-east-1',
|
||||||
)
|
)
|
||||||
response = client.retrieve(
|
response = client.retrieve(
|
||||||
knowledgeBaseId=external_knowledge_id,
|
knowledgeBaseId=external_knowledge_id,
|
||||||
@ -326,6 +328,8 @@ class ExternalDatasetService:
|
|||||||
if response.get("retrievalResults"):
|
if response.get("retrievalResults"):
|
||||||
retrieval_results = response.get("retrievalResults")
|
retrieval_results = response.get("retrievalResults")
|
||||||
for retrieval_result in retrieval_results:
|
for retrieval_result in retrieval_results:
|
||||||
|
if retrieval_result.get("score") < score_threshold:
|
||||||
|
continue
|
||||||
result = {
|
result = {
|
||||||
"metadata": retrieval_result.get("metadata"),
|
"metadata": retrieval_result.get("metadata"),
|
||||||
"score": retrieval_result.get("score"),
|
"score": retrieval_result.get("score"),
|
||||||
|
Loading…
Reference in New Issue
Block a user