feat: support huawei cloud vector database

This commit is contained in:
elvisliu 2025-03-18 23:35:04 +08:00
parent ac80c04bd3
commit fa275b9fdc
9 changed files with 257 additions and 0 deletions

View File

@ -22,6 +22,7 @@ from .vdb.baidu_vector_config import BaiduVectorDBConfig
from .vdb.chroma_config import ChromaConfig
from .vdb.couchbase_config import CouchbaseConfig
from .vdb.elasticsearch_config import ElasticsearchConfig
from .vdb.huawei_cloud_config import HuaweiCloudConfig
from .vdb.lindorm_config import LindormConfig
from .vdb.milvus_config import MilvusConfig
from .vdb.myscale_config import MyScaleConfig
@ -262,6 +263,7 @@ class MiddlewareConfig(
VectorStoreConfig,
AnalyticdbConfig,
ChromaConfig,
HuaweiCloudConfig,
MilvusConfig,
MyScaleConfig,
OpenSearchConfig,

View File

@ -0,0 +1,25 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings
class HuaweiCloudConfig(BaseSettings):
"""
Configuration settings for Huawei cloud search service
"""
HUAWEI_CLOUD_HOSTS: Optional[str] = Field(
description="Hostname or IP address of the Huawei cloud search service instance",
default=None,
)
HUAWEI_CLOUD_USER: Optional[str] = Field(
description="Username for authenticating with Huawei cloud search service",
default=None,
)
HUAWEI_CLOUD_PASSWORD: Optional[str] = Field(
description="Password for authenticating with Huawei cloud search service",
default=None,
)

View File

@ -664,6 +664,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.COUCHBASE
| VectorType.MILVUS
| VectorType.OPENGAUSS
| VectorType.HUAWEI_CLOUD
):
return {
"retrieval_method": [
@ -708,6 +709,7 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.PGVECTOR
| VectorType.LINDORM
| VectorType.OPENGAUSS
| VectorType.HUAWEI_CLOUD
):
return {
"retrieval_method": [

View File

@ -0,0 +1,215 @@
import json
import logging
import ssl
from typing import Any, Optional
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from elasticsearch import Elasticsearch
from extensions.ext_redis import redis_client
from models.dataset import Dataset
from pydantic import BaseModel, model_validator
logger = logging.getLogger(__name__)
def create_ssl_context() -> ssl.SSLContext:
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
return ssl_context
class HuaweiCloudVectorConfig(BaseModel):
hosts: str
username: str
password: str
@model_validator(mode="before")
@classmethod
def validate_config(cls, values: dict) -> dict:
if not values["hosts"]:
raise ValueError("config HOSTS is required")
return values
def to_elasticsearch_params(self) -> dict[str, Any]:
params = {
"hosts": self.hosts.split(","),
"verify_certs": False,
"ssl_show_warn": False,
}
if self.username and self.password:
params["basic_auth"] = (self.username, self.password)
return params
class HuaweiCloudVector(BaseVector):
def __init__(self, index_name: str, config: HuaweiCloudVectorConfig, attributes: list):
super().__init__(index_name.lower())
self._client = Elasticsearch(**config.to_elasticsearch_params())
self._attributes = attributes
def get_type(self) -> str:
return VectorType.HUAWEI_CLOUD
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
for i in range(len(documents)):
self._client.index(
index=self._collection_name,
id=uuids[i],
document={
Field.CONTENT_KEY.value: documents[i].page_content,
Field.VECTOR.value: embeddings[i] or None,
Field.METADATA_KEY.value: documents[i].metadata or {},
},
)
self._client.indices.refresh(index=self._collection_name)
return uuids
def text_exists(self, id: str) -> bool:
return bool(self._client.exists(index=self._collection_name, id=id))
def delete_by_ids(self, ids: list[str]) -> None:
if not ids:
return
for id in ids:
self._client.delete(index=self._collection_name, id=id)
def delete_by_metadata_field(self, key: str, value: str) -> None:
query_str = {"query": {"match": {f"metadata.{key}": f"{value}"}}}
results = self._client.search(index=self._collection_name, body=query_str)
ids = [hit["_id"] for hit in results["hits"]["hits"]]
if ids:
self.delete_by_ids(ids)
def delete(self) -> None:
self._client.indices.delete(index=self._collection_name)
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 4)
query = {
"size": top_k,
"query": {
"vector": {
Field.VECTOR.value: {
"vector": query_vector,
"topk": top_k,
}
}
}
}
results = self._client.search(index=self._collection_name, body=query, request_timeout=120)
docs_and_scores = []
for hit in results["hits"]["hits"]:
docs_and_scores.append(
(
Document(
page_content=hit["_source"][Field.CONTENT_KEY.value],
vector=hit["_source"][Field.VECTOR.value],
metadata=hit["_source"][Field.METADATA_KEY.value],
),
hit["_score"],
)
)
docs = []
for doc, score in docs_and_scores:
score_threshold = float(kwargs.get("score_threshold") or 0.0)
if score > score_threshold:
if doc.metadata is not None:
doc.metadata["score"] = score
docs.append(doc)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
query_str = {"match": {Field.CONTENT_KEY.value: query}}
results = self._client.search(index=self._collection_name, query=query_str, size=kwargs.get("top_k", 4))
docs = []
for hit in results["hits"]["hits"]:
docs.append(
Document(
page_content=hit["_source"][Field.CONTENT_KEY.value],
vector=hit["_source"][Field.VECTOR.value],
metadata=hit["_source"][Field.METADATA_KEY.value],
)
)
return docs
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
metadatas = [d.metadata if d.metadata is not None else {} for d in texts]
self.create_collection(embeddings, metadatas)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(
self,
embeddings: list[list[float]],
metadatas: Optional[list[dict[Any, Any]]] = None,
index_params: Optional[dict] = None,
):
lock_name = f"vector_indexing_lock_{self._collection_name}"
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = f"vector_indexing_{self._collection_name}"
if redis_client.get(collection_exist_cache_key):
logger.info(f"Collection {self._collection_name} already exists.")
return
if not self._client.indices.exists(index=self._collection_name):
dim = len(embeddings[0])
mappings = {
"properties": {
Field.CONTENT_KEY.value: {"type": "text"},
Field.VECTOR.value: { # Make sure the dimension is correct here
"type": "vector",
"dimension": dim,
"indexing": True,
"algorithm": "GRAPH",
"metric": "cosine",
"neighbors": 32,
"efc": 128
},
Field.METADATA_KEY.value: {
"type": "object",
"properties": {
"doc_id": {"type": "keyword"} # Map doc_id to keyword type
},
},
}
}
settings = {
"index.vector": True
}
self._client.indices.create(index=self._collection_name, mappings=mappings, settings=settings)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
class HuaweiCloudVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> HuaweiCloudVector:
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix.lower()
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.HUAWEI_CLOUD, collection_name))
return HuaweiCloudVector(
index_name=collection_name,
config=HuaweiCloudVectorConfig(
hosts=dify_config.HUAWEI_CLOUD_HOSTS,
username=dify_config.HUAWEI_CLOUD_USER,
password=dify_config.HUAWEI_CLOUD_PASSWORD,
),
attributes=[],
)

View File

@ -152,6 +152,10 @@ class Vector:
from core.rag.datasource.vdb.opengauss.opengauss import OpenGaussFactory
return OpenGaussFactory
case VectorType.HUAWEI_CLOUD:
from core.rag.datasource.vdb.huawei.huawei_cloud_vector import HuaweiCloudVectorFactory
return HuaweiCloudVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -25,3 +25,4 @@ class VectorType(StrEnum):
TIDB_ON_QDRANT = "tidb_on_qdrant"
OCEANBASE = "oceanbase"
OPENGAUSS = "opengauss"
HUAWEI_CLOUD = "huawei_cloud"

View File

@ -564,6 +564,11 @@ OPENGAUSS_DATABASE=dify
OPENGAUSS_MIN_CONNECTION=1
OPENGAUSS_MAX_CONNECTION=5
# huawei cloud search service vector configurations, only available when VECTOR_STORE is `huawei_cloud`
HUAWEI_CLOUD_HOSTS=https://127.0.0.1:9200
HUAWEI_CLOUD_USER=admin
HUAWEI_CLOUD_PASSWORD=admin
# Upstash Vector configuration, only available when VECTOR_STORE is `upstash`
UPSTASH_VECTOR_URL=https://xxx-vector.upstash.io
UPSTASH_VECTOR_TOKEN=dify

View File

@ -259,6 +259,9 @@ x-shared-env: &shared-api-worker-env
OPENGAUSS_DATABASE: ${OPENGAUSS_DATABASE:-dify}
OPENGAUSS_MIN_CONNECTION: ${OPENGAUSS_MIN_CONNECTION:-1}
OPENGAUSS_MAX_CONNECTION: ${OPENGAUSS_MAX_CONNECTION:-5}
HUAWEI_CLOUD_HOSTS: ${HUAWEI_CLOUD_HOSTS:-http://127.0.0.1:9200}
HUAWEI_CLOUD_USER: ${HUAWEI_CLOUD_USER:-admin}
HUAWEI_CLOUD_PASSWORD: ${HUAWEI_CLOUD_PASSWORD:-admin}
UPSTASH_VECTOR_URL: ${UPSTASH_VECTOR_URL:-https://xxx-vector.upstash.io}
UPSTASH_VECTOR_TOKEN: ${UPSTASH_VECTOR_TOKEN:-dify}
UPLOAD_FILE_SIZE_LIMIT: ${UPLOAD_FILE_SIZE_LIMIT:-15}