Compare commits

...

10 Commits

Author SHA1 Message Date
jyong
3f34b7e103 add score threshold 2024-04-25 19:25:08 +08:00
quicksand
a401a73eb7
Merge branch 'main' into main 2024-04-25 17:02:00 +08:00
quicksandzn
01e27def9e optimize: reformat and move test to api/tests/integration_tests/vdb/tcvectordb 2024-04-25 16:15:32 +08:00
quicksand
617fec0dad
Merge branch 'langgenius:main' into main 2024-04-23 10:59:29 +08:00
quicksandzn
e3d5d2f7ae remove comments 2024-04-19 09:08:23 +08:00
quicksandzn
90dca38ce7 optimize: config prefix 2024-04-18 12:01:45 +08:00
quicksandzn
fe905ea696 optimize: test tencent vdb 2024-04-18 11:29:48 +08:00
quicksandzn
96aeb34f7d remove .env 2024-04-18 09:15:36 +08:00
quicksandzn
75bbfb5bc7 optimize:add requirements 2024-04-17 19:16:28 +08:00
quicksandzn
324a0baf22 feat: support tencent vdb 2024-04-17 19:14:00 +08:00
11 changed files with 304 additions and 4 deletions

View File

@ -90,6 +90,15 @@ RELYT_USER=postgres
RELYT_PASSWORD=postgres
RELYT_DATABASE=postgres
# Tencent configuration
TENCENT_VECTOR_DB_URL=http://127.0.0.1
TENCENT_VECTOR_DB_API_KEY=dify
TENCENT_VECTOR_DB_TIMEOUT=30
TENCENT_VECTOR_DB_USERNAME=dify
TENCENT_VECTOR_DB_DATABASE=dify
TENCENT_VECTOR_DB_SHARD=1
TENCENT_VECTOR_DB_REPLICAS=2
# Upload configuration
UPLOAD_FILE_SIZE_LIMIT=15
UPLOAD_FILE_BATCH_LIMIT=5

View File

@ -305,6 +305,14 @@ def migrate_knowledge_vector_database():
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == "tencent":
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'tencent',
"vector_store": {"class_prefix": collection_name}
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")

View File

@ -245,6 +245,15 @@ class Config:
self.RELYT_PASSWORD = get_env('RELYT_PASSWORD')
self.RELYT_DATABASE = get_env('RELYT_DATABASE')
# tencent settings
self.TENCENT_VECTOR_DB_URL = get_env('TENCENT_VECTOR_DB_URL')
self.TENCENT_VECTOR_DB_API_KEY = get_env('TENCENT_VECTOR_DB_API_KEY')
self.TENCENT_VECTOR_DB_TIMEOUT = get_env('TENCENT_VECTOR_DB_TIMEOUT')
self.TENCENT_VECTOR_DB_USERNAME = get_env('TENCENT_VECTOR_DB_USERNAME')
self.TENCENT_VECTOR_DB_DATABASE = get_env('TENCENT_VECTOR_DB_DATABASE')
self.TENCENT_VECTOR_DB_SHARD = get_env('TENCENT_VECTOR_DB_SHARD')
self.TENCENT_VECTOR_DB_REPLICAS = get_env('TENCENT_VECTOR_DB_REPLICAS')
# ------------------------
# Mail Configurations.
# ------------------------

View File

@ -476,7 +476,7 @@ class DatasetRetrievalSettingApi(Resource):
@account_initialization_required
def get(self):
vector_type = current_app.config['VECTOR_STORE']
if vector_type == 'milvus':
if vector_type == 'milvus' or vector_type == 'tencent':
return {
'retrieval_method': [
'semantic_search'
@ -498,7 +498,7 @@ class DatasetRetrievalSettingMockApi(Resource):
@account_initialization_required
def get(self, vector_type):
if vector_type == 'milvus':
if vector_type == 'milvus' or vector_type == 'tencent':
return {
'retrieval_method': [
'semantic_search'

View File

@ -0,0 +1,183 @@
import json
from typing import Any, Optional
import tcvectordb
from pydantic import BaseModel
from tcvectordb.model import document, enum
from tcvectordb.model import index as vdb_index
from tcvectordb.model.document import Filter
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
class TencentConfig(BaseModel):
url: str
api_key: Optional[str]
timeout: float = 30
username: Optional[str]
database: Optional[str]
index_type: str = "HNSW"
metric_type: str = "L2"
shard: int = 1,
replicas: int = 2,
def to_tencent_params(self):
return {
'url': self.url,
'username': self.username,
'key': self.api_key,
'timeout': self.timeout
}
class TencentVector(BaseVector):
field_id: str = "id"
field_vector: str = "vector"
field_text: str = "text"
field_metadata: str = "metadata"
def __init__(self, collection_name: str, config: TencentConfig):
super().__init__(collection_name)
self._client_config = config
self._client = tcvectordb.VectorDBClient(**self._client_config.to_tencent_params())
self._db = self._init_database()
def _init_database(self):
exists = False
for db in self._client.list_databases():
if db.database_name == self._client_config.database:
exists = True
break
if exists:
return self._client.database(self._client_config.database)
else:
return self._client.create_database(database_name=self._client_config.database)
def get_type(self) -> str:
return 'tencent'
def to_index_struct(self) -> dict:
return {
"type": self.get_type(),
"vector_store": {"class_prefix": self._collection_name}
}
def _create_collection(self, dimension: int) -> None:
lock_name = 'vector_indexing_lock_{}'.format(self._collection_name)
with redis_client.lock(lock_name, timeout=20):
collections = self._db.list_collections()
for collection in collections:
if collection.collection_name == self._collection_name:
self.collection = collection
return
index_type = None
for k, v in enum.IndexType.__members__.items():
if k == self._client_config.index_type:
index_type = v
if index_type is None:
raise ValueError("unsupported index_type")
metric_type = None
for k, v in enum.MetricType.__members__.items():
if k == self._client_config.metric_type:
metric_type = v
if metric_type is None:
raise ValueError("unsupported metric_type")
params = vdb_index.HNSWParams(m=16, efconstruction=200)
index = vdb_index.Index(
vdb_index.FilterIndex(
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
),
vdb_index.VectorIndex(
self.field_vector,
dimension,
index_type,
metric_type,
params,
),
vdb_index.FilterIndex(
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
),
vdb_index.FilterIndex(
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
),
)
self.collection = self._db.create_collection(
name=self._collection_name,
shard=self._client_config.shard,
replicas=self._client_config.replicas,
description="Collection for Dify",
index=index,
)
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
self._create_collection(len(embeddings[0]))
self.add_texts(texts, embeddings)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
total_count = len(embeddings)
docs = []
for id in range(0, total_count):
if metadatas is None:
continue
metadata = json.dumps(metadatas[id])
doc = document.Document(
id=metadatas[id]["doc_id"],
vector=embeddings[id],
text=texts[id],
metadata=metadata,
)
docs.append(doc)
self.collection.upsert(docs, self._client_config.timeout)
def text_exists(self, id: str) -> bool:
docs = self._db.collection(self._collection_name).query(document_ids=[id])
if docs and len(docs) > 0:
return True
return False
def delete_by_ids(self, ids: list[str]) -> None:
self._db.collection(self._collection_name).delete(document_ids=ids)
def delete_by_metadata_field(self, key: str, value: str) -> None:
docs = self._db.collection(self._collection_name).query(filter=Filter(Filter.In(key, [value])))
if docs and len(docs) > 0:
self.collection.delete(document_ids=[doc['id'] for doc in docs])
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
res = self._db.collection(self._collection_name).search(vectors=[query_vector],
params=document.HNSWSearchParams(
ef=kwargs.get("ef", 10)),
retrieve_vector=False,
limit=kwargs.get('top_k', 4),
timeout=self._client_config.timeout,
)
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
return self._get_search_res(res, score_threshold)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
return []
def _get_search_res(self, res, score_threshold):
docs = []
if res is None or len(res) == 0:
return docs
for result in res[0]:
meta = result.get(self.field_metadata)
if meta is not None:
meta = json.loads(meta)
score = 1 - result.get("score")
if score > score_threshold:
meta['score'] = score
doc = Document(page_content=result.get(self.field_text), metadata=meta)
docs.append(doc)
return docs
def delete(self) -> None:
self._db.drop_collection(name=self._collection_name)

View File

@ -25,7 +25,6 @@ class Vector:
def _init_vector(self) -> BaseVector:
config = current_app.config
vector_type = config.get('VECTOR_STORE')
if self._dataset.index_struct_dict:
vector_type = self._dataset.index_struct_dict['type']
@ -138,6 +137,31 @@ class Vector:
),
dim=dim
)
elif vector_type == "tencent":
from core.rag.datasource.vdb.tencent.tencent_vector import TencentConfig, TencentVector
if self._dataset.index_struct_dict:
class_prefix: str = self._dataset.index_struct_dict['vector_store']['class_prefix']
collection_name = class_prefix
else:
dataset_id = self._dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": 'tencent',
"vector_store": {"class_prefix": collection_name}
}
self._dataset.index_struct = json.dumps(index_struct_dict)
return TencentVector(
collection_name=collection_name,
config=TencentConfig(
url=config.get('TENCENT_VECTOR_DB_URL'),
api_key=config.get('TENCENT_VECTOR_DB_API_KEY'),
timeout=config.get('TENCENT_VECTOR_DB_TIMEOUT'),
username=config.get('TENCENT_VECTOR_DB_USERNAME'),
database=config.get('TENCENT_VECTOR_DB_DATABASE'),
shard=config.get('TENCENT_VECTOR_DB_SHARD'),
replicas=config.get('TENCENT_VECTOR_DB_REPLICAS'),
)
)
else:
raise ValueError(f"Vector store {config.get('VECTOR_STORE')} is not supported.")

View File

@ -80,4 +80,5 @@ lxml==5.1.0
xlrd~=2.0.1
pydantic~=1.10.0
pgvecto-rs==0.1.4
oss2==2.15.0
oss2==2.15.0
tcvectordb==1.3.2

View File

@ -0,0 +1,58 @@
import pytest
from core.rag.datasource.vdb.tencent.tencent_vector import TencentConfig, TencentVector
from core.rag.models.document import Document
from extensions.ext_redis import redis_client
def _create_tencent_vector() -> TencentVector:
tencent_vector = TencentVector(
collection_name='test-001',
config=TencentConfig(
url="http://10.6.x.x",
api_key="nTZ**********************",
timeout=30,
username="dify",
database="dify",
shard=1,
replicas=2,
)
)
documents = [
Document(page_content="This is document 1", metadata={"doc_id": "doc1", "document_id": "foo1"}),
Document(page_content="This is document 2", metadata={"doc_id": "doc2", "document_id": "foo2"}),
]
embeddings = [[0.2123, 0.23, 0.213], [0.2123, 0.22, 0.213]]
tencent_vector.create(texts=documents, embeddings=embeddings)
return tencent_vector
@pytest.fixture(autouse=True)
def mock_redis_lock(mocker):
mocker.patch.object(redis_client, "lock")
def test_text_exists():
tencent_vector = _create_tencent_vector()
assert tencent_vector.text_exists(id="doc1") is True
def test_delete_by_ids():
tencent_vector = _create_tencent_vector()
tencent_vector.delete_by_ids(ids=['doc2'])
def test_delete_by_metadata_field():
tencent_vector = _create_tencent_vector()
tencent_vector.delete_by_metadata_field(key="document_id", value="foo1")
def test_search_by_vector():
tencent_vector = _create_tencent_vector()
res = tencent_vector.search_by_vector(query_vector=[0.3123, 0.43, 0.213])
assert len(res) > 0
def test_delete():
tencent_vector = _create_tencent_vector()
tencent_vector.delete()

View File

@ -229,6 +229,14 @@ services:
RELYT_USER: postgres
RELYT_PASSWORD: difyai123456
RELYT_DATABASE: postgres
# tencent configurations
TENCENT_VECTOR_DB_URL: http://127.0.0.1
TENCENT_VECTOR_DB_API_KEY: dify
TENCENT_VECTOR_DB_TIMEOUT: 30
TENCENT_VECTOR_DB_USERNAME: dify
TENCENT_VECTOR_DB_DATABASE: dify
TENCENT_VECTOR_DB_SHARD: 1
TENCENT_VECTOR_DB_REPLICAS: 2
depends_on:
- db
- redis