import pytest from core.rag.datasource.vdb.qdrant.qdrant_vector import QdrantVector, QdrantConfig from core.rag.models.document import Document @pytest.mark.parametrize('setup_qdrant_mock', [['get_collections', 'recreate_collection', 'create_payload_index', 'upsert', 'scroll', 'search']], indirect=True) def test_qdrant(setup_qdrant_mock): document = Document(page_content="test", metadata={"test": "test"}) qdrant_vector = QdrantVector( collection_name="test", group_id='test', config=QdrantConfig( endpoint="http://localhost:6333", api_key="test", root_path="test", timeout=10 ) ) # create qdrant_vector.create(texts=[document], embeddings=[[0.23333 for _ in range(233)]]) # search result = qdrant_vector.search_by_vector(query_vector=[0.23333 for _ in range(233)]) for item in result: assert isinstance(item, Document) # delete qdrant_vector.delete()