178 lines
5.2 KiB
Python
178 lines
5.2 KiB
Python
import tempfile
|
|
from binascii import hexlify, unhexlify
|
|
from collections.abc import Generator
|
|
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
|
from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
|
|
from core.plugin.entities.request import (
|
|
RequestInvokeLLM,
|
|
RequestInvokeModeration,
|
|
RequestInvokeRerank,
|
|
RequestInvokeSpeech2Text,
|
|
RequestInvokeTextEmbedding,
|
|
RequestInvokeTTS,
|
|
)
|
|
from core.workflow.nodes.llm.llm_node import LLMNode
|
|
from models.account import Tenant
|
|
|
|
|
|
class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
|
|
@classmethod
|
|
def invoke_llm(
|
|
cls, user_id: str, tenant: Tenant, payload: RequestInvokeLLM
|
|
) -> Generator[LLMResultChunk, None, None] | LLMResult:
|
|
"""
|
|
invoke llm
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_llm(
|
|
prompt_messages=payload.prompt_messages,
|
|
model_parameters=payload.model_parameters,
|
|
tools=payload.tools,
|
|
stop=payload.stop,
|
|
stream=payload.stream or True,
|
|
user=user_id,
|
|
)
|
|
|
|
if isinstance(response, Generator):
|
|
|
|
def handle() -> Generator[LLMResultChunk, None, None]:
|
|
for chunk in response:
|
|
if chunk.delta.usage:
|
|
LLMNode.deduct_llm_quota(
|
|
tenant_id=tenant.id, model_instance=model_instance, usage=chunk.delta.usage
|
|
)
|
|
yield chunk
|
|
|
|
return handle()
|
|
else:
|
|
if response.usage:
|
|
LLMNode.deduct_llm_quota(tenant_id=tenant.id, model_instance=model_instance, usage=response.usage)
|
|
return response
|
|
|
|
@classmethod
|
|
def invoke_text_embedding(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTextEmbedding):
|
|
"""
|
|
invoke text embedding
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_text_embedding(
|
|
texts=payload.texts,
|
|
user=user_id,
|
|
)
|
|
|
|
return response
|
|
|
|
@classmethod
|
|
def invoke_rerank(cls, user_id: str, tenant: Tenant, payload: RequestInvokeRerank):
|
|
"""
|
|
invoke rerank
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_rerank(
|
|
query=payload.query,
|
|
docs=payload.docs,
|
|
score_threshold=payload.score_threshold,
|
|
top_n=payload.top_n,
|
|
user=user_id,
|
|
)
|
|
|
|
return response
|
|
|
|
@classmethod
|
|
def invoke_tts(cls, user_id: str, tenant: Tenant, payload: RequestInvokeTTS):
|
|
"""
|
|
invoke tts
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_tts(
|
|
content_text=payload.content_text,
|
|
tenant_id=tenant.id,
|
|
voice=payload.voice,
|
|
user=user_id,
|
|
)
|
|
|
|
def handle() -> Generator[dict, None, None]:
|
|
for chunk in response:
|
|
yield {"result": hexlify(chunk).decode("utf-8")}
|
|
|
|
return handle()
|
|
|
|
@classmethod
|
|
def invoke_speech2text(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSpeech2Text):
|
|
"""
|
|
invoke speech2text
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
with tempfile.NamedTemporaryFile(suffix=".mp3", mode="wb", delete=True) as temp:
|
|
temp.write(unhexlify(payload.file))
|
|
temp.flush()
|
|
temp.seek(0)
|
|
|
|
response = model_instance.invoke_speech2text(
|
|
file=temp,
|
|
user=user_id,
|
|
)
|
|
|
|
return {
|
|
"result": response,
|
|
}
|
|
|
|
@classmethod
|
|
def invoke_moderation(cls, user_id: str, tenant: Tenant, payload: RequestInvokeModeration):
|
|
"""
|
|
invoke moderation
|
|
"""
|
|
model_instance = ModelManager().get_model_instance(
|
|
tenant_id=tenant.id,
|
|
provider=payload.provider,
|
|
model_type=payload.model_type,
|
|
model=payload.model,
|
|
)
|
|
|
|
# invoke model
|
|
response = model_instance.invoke_moderation(
|
|
text=payload.text,
|
|
user=user_id,
|
|
)
|
|
|
|
return {
|
|
"result": response,
|
|
}
|