
Signed-off-by: yihong0618 <zouzou0208@gmail.com> Signed-off-by: -LAN- <laipz8200@outlook.com> Signed-off-by: xhe <xw897002528@gmail.com> Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: kurokobo <kuro664@gmail.com> Co-authored-by: Hiroshi Fujita <fujita-h@users.noreply.github.com> Co-authored-by: NFish <douxc512@gmail.com> Co-authored-by: Gen Sato <52241300+halogen22@users.noreply.github.com> Co-authored-by: eux <euxuuu@gmail.com> Co-authored-by: huangzhuo1949 <167434202+huangzhuo1949@users.noreply.github.com> Co-authored-by: huangzhuo <huangzhuo1@xiaomi.com> Co-authored-by: lotsik <lotsik@mail.ru> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: Wu Tianwei <30284043+WTW0313@users.noreply.github.com> Co-authored-by: nite-knite <nkCoding@gmail.com> Co-authored-by: Jyong <76649700+JohnJyong@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: gakkiyomi <gakkiyomi@aliyun.com> Co-authored-by: CN-P5 <heibai2006@gmail.com> Co-authored-by: CN-P5 <heibai2006@qq.com> Co-authored-by: Chuehnone <1897025+chuehnone@users.noreply.github.com> Co-authored-by: yihong <zouzou0208@gmail.com> Co-authored-by: Kevin9703 <51311316+Kevin9703@users.noreply.github.com> Co-authored-by: -LAN- <laipz8200@outlook.com> Co-authored-by: Boris Feld <lothiraldan@gmail.com> Co-authored-by: mbo <himabo@gmail.com> Co-authored-by: mabo <mabo@aeyes.ai> Co-authored-by: Warren Chen <warren.chen830@gmail.com> Co-authored-by: KVOJJJin <jzongcode@gmail.com> Co-authored-by: JzoNgKVO <27049666+JzoNgKVO@users.noreply.github.com> Co-authored-by: jiandanfeng <chenjh3@wangsu.com> Co-authored-by: zhu-an <70234959+xhdd123321@users.noreply.github.com> Co-authored-by: zhaoqingyu.1075 <zhaoqingyu.1075@bytedance.com> Co-authored-by: 海狸大師 <86974027+yenslife@users.noreply.github.com> Co-authored-by: Xu Song <xusong.vip@gmail.com> Co-authored-by: rayshaw001 <396301947@163.com> Co-authored-by: Ding Jiatong <dingjiatong@gmail.com> Co-authored-by: Bowen Liang <liangbowen@gf.com.cn> Co-authored-by: JasonVV <jasonwangiii@outlook.com> Co-authored-by: le0zh <newlight@qq.com> Co-authored-by: zhuxinliang <zhuxinliang@didiglobal.com> Co-authored-by: k-zaku <zaku99@outlook.jp> Co-authored-by: Joel <iamjoel007@gmail.com> Co-authored-by: luckylhb90 <luckylhb90@gmail.com> Co-authored-by: hobo.l <hobo.l@binance.com> Co-authored-by: jiangbo721 <365065261@qq.com> Co-authored-by: 刘江波 <jiangbo721@163.com> Co-authored-by: Shun Miyazawa <34241526+miya@users.noreply.github.com> Co-authored-by: EricPan <30651140+Egfly@users.noreply.github.com> Co-authored-by: crazywoola <427733928@qq.com> Co-authored-by: zxhlyh <jasonapring2015@outlook.com> Co-authored-by: sino <sino2322@gmail.com> Co-authored-by: Jhvcc <37662342+Jhvcc@users.noreply.github.com> Co-authored-by: lowell <lowell.hu@zkteco.in> Co-authored-by: Ademílson Tonato <ademilsonft@outlook.com> Co-authored-by: Ademílson Tonato <ademilson.tonato@refurbed.com> Co-authored-by: IWAI, Masaharu <iwaim.sub@gmail.com> Co-authored-by: Yueh-Po Peng (Yabi) <94939112+y10ab1@users.noreply.github.com> Co-authored-by: 非法操作 <hjlarry@163.com> Co-authored-by: Jason <ggbbddjm@gmail.com> Co-authored-by: Xin Zhang <sjhpzx@gmail.com> Co-authored-by: yjc980121 <3898524+yjc980121@users.noreply.github.com> Co-authored-by: heyszt <36215648+hieheihei@users.noreply.github.com> Co-authored-by: Abdullah AlOsaimi <osaimiacc@gmail.com> Co-authored-by: Abdullah AlOsaimi <189027247+osaimi@users.noreply.github.com> Co-authored-by: Yingchun Lai <laiyingchun@apache.org> Co-authored-by: Hash Brown <hi@xzd.me> Co-authored-by: zuodongxu <192560071+zuodongxu@users.noreply.github.com> Co-authored-by: Masashi Tomooka <tmokmss@users.noreply.github.com> Co-authored-by: aplio <ryo.091219@gmail.com> Co-authored-by: Obada Khalili <54270856+obadakhalili@users.noreply.github.com> Co-authored-by: Nam Vu <zuzoovn@gmail.com> Co-authored-by: Kei YAMAZAKI <1715090+kei-yamazaki@users.noreply.github.com> Co-authored-by: TechnoHouse <13776377+deephbz@users.noreply.github.com> Co-authored-by: Riddhimaan-Senapati <114703025+Riddhimaan-Senapati@users.noreply.github.com> Co-authored-by: MaFee921 <31881301+2284730142@users.noreply.github.com> Co-authored-by: te-chan <t-nakanome@sakura-is.co.jp> Co-authored-by: HQidea <HQidea@users.noreply.github.com> Co-authored-by: Joshbly <36315710+Joshbly@users.noreply.github.com> Co-authored-by: xhe <xw897002528@gmail.com> Co-authored-by: weiwenyan-dev <154779315+weiwenyan-dev@users.noreply.github.com> Co-authored-by: ex_wenyan.wei <ex_wenyan.wei@tcl.com> Co-authored-by: engchina <12236799+engchina@users.noreply.github.com> Co-authored-by: engchina <atjapan2015@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: 呆萌闷油瓶 <253605712@qq.com> Co-authored-by: Kemal <kemalmeler@outlook.com> Co-authored-by: Lazy_Frog <4590648+lazyFrogLOL@users.noreply.github.com> Co-authored-by: Novice Lee <novicelee@NoviPro.local> Co-authored-by: Yi Xiao <54782454+YIXIAO0@users.noreply.github.com> Co-authored-by: Steven sun <98230804+Tuyohai@users.noreply.github.com> Co-authored-by: steven <sunzwj@digitalchina.com> Co-authored-by: Kalo Chin <91766386+fdb02983rhy@users.noreply.github.com> Co-authored-by: Katy Tao <34019945+KatyTao@users.noreply.github.com> Co-authored-by: depy <42985524+h4ckdepy@users.noreply.github.com> Co-authored-by: 胡春东 <gycm520@gmail.com> Co-authored-by: Junjie.M <118170653@qq.com>
507 lines
22 KiB
Python
507 lines
22 KiB
Python
import json
|
|
|
|
from flask import request
|
|
from flask_restful import marshal, reqparse # type: ignore
|
|
from sqlalchemy import desc
|
|
from werkzeug.exceptions import NotFound
|
|
|
|
import services.dataset_service
|
|
from controllers.common.errors import FilenameNotExistsError
|
|
from controllers.service_api import api
|
|
from controllers.service_api.app.error import (
|
|
FileTooLargeError,
|
|
NoFileUploadedError,
|
|
ProviderNotInitializeError,
|
|
TooManyFilesError,
|
|
UnsupportedFileTypeError,
|
|
)
|
|
from controllers.service_api.dataset.error import (
|
|
ArchivedDocumentImmutableError,
|
|
DocumentIndexingError,
|
|
InvalidMetadataError,
|
|
)
|
|
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
|
|
from core.errors.error import ProviderTokenNotInitError
|
|
from extensions.ext_database import db
|
|
from fields.document_fields import document_fields, document_status_fields
|
|
from libs.login import current_user
|
|
from models.dataset import Dataset, Document, DocumentSegment
|
|
from services.dataset_service import DocumentService
|
|
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
|
|
from services.file_service import FileService
|
|
|
|
|
|
class DocumentAddByTextApi(DatasetApiResource):
|
|
"""Resource for documents."""
|
|
|
|
@cloud_edition_billing_resource_check("vector_space", "dataset")
|
|
@cloud_edition_billing_resource_check("documents", "dataset")
|
|
def post(self, tenant_id, dataset_id):
|
|
"""Create document by text."""
|
|
parser = reqparse.RequestParser()
|
|
parser.add_argument("name", type=str, required=True, nullable=False, location="json")
|
|
parser.add_argument("text", type=str, required=True, nullable=False, location="json")
|
|
parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
|
|
parser.add_argument("original_document_id", type=str, required=False, location="json")
|
|
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
|
|
parser.add_argument(
|
|
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
|
|
)
|
|
parser.add_argument(
|
|
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
|
|
)
|
|
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
|
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
|
|
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
|
|
|
|
args = parser.parse_args()
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("Dataset is not exist.")
|
|
|
|
if not dataset.indexing_technique and not args["indexing_technique"]:
|
|
raise ValueError("indexing_technique is required.")
|
|
|
|
# Validate metadata if provided
|
|
if args.get("doc_type") or args.get("doc_metadata"):
|
|
if not args.get("doc_type") or not args.get("doc_metadata"):
|
|
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
|
|
|
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
|
raise InvalidMetadataError(
|
|
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
|
)
|
|
|
|
if not isinstance(args["doc_metadata"], dict):
|
|
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
|
|
|
# Validate metadata schema based on doc_type
|
|
if args["doc_type"] != "others":
|
|
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
|
for key, value in args["doc_metadata"].items():
|
|
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
|
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
|
# set to MetaDataConfig
|
|
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
|
|
|
text = args.get("text")
|
|
name = args.get("name")
|
|
if text is None or name is None:
|
|
raise ValueError("Both 'text' and 'name' must be non-null values.")
|
|
|
|
upload_file = FileService.upload_text(text=str(text), text_name=str(name))
|
|
data_source = {
|
|
"type": "upload_file",
|
|
"info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
|
|
}
|
|
args["data_source"] = data_source
|
|
knowledge_config = KnowledgeConfig(**args)
|
|
# validate args
|
|
DocumentService.document_create_args_validate(knowledge_config)
|
|
|
|
try:
|
|
documents, batch = DocumentService.save_document_with_dataset_id(
|
|
dataset=dataset,
|
|
knowledge_config=knowledge_config,
|
|
account=current_user,
|
|
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
|
created_from="api",
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
document = documents[0]
|
|
|
|
documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
|
|
return documents_and_batch_fields, 200
|
|
|
|
|
|
class DocumentUpdateByTextApi(DatasetApiResource):
|
|
"""Resource for update documents."""
|
|
|
|
@cloud_edition_billing_resource_check("vector_space", "dataset")
|
|
def post(self, tenant_id, dataset_id, document_id):
|
|
"""Update document by text."""
|
|
parser = reqparse.RequestParser()
|
|
parser.add_argument("name", type=str, required=False, nullable=True, location="json")
|
|
parser.add_argument("text", type=str, required=False, nullable=True, location="json")
|
|
parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
|
|
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
|
|
parser.add_argument(
|
|
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
|
|
)
|
|
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
|
|
parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
|
|
parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
|
|
args = parser.parse_args()
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("Dataset is not exist.")
|
|
|
|
# indexing_technique is already set in dataset since this is an update
|
|
args["indexing_technique"] = dataset.indexing_technique
|
|
|
|
# Validate metadata if provided
|
|
if args.get("doc_type") or args.get("doc_metadata"):
|
|
if not args.get("doc_type") or not args.get("doc_metadata"):
|
|
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
|
|
|
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
|
raise InvalidMetadataError(
|
|
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
|
)
|
|
|
|
if not isinstance(args["doc_metadata"], dict):
|
|
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
|
|
|
# Validate metadata schema based on doc_type
|
|
if args["doc_type"] != "others":
|
|
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
|
for key, value in args["doc_metadata"].items():
|
|
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
|
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
|
|
|
# set to MetaDataConfig
|
|
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
|
|
|
if args["text"]:
|
|
text = args.get("text")
|
|
name = args.get("name")
|
|
if text is None or name is None:
|
|
raise ValueError("Both text and name must be strings.")
|
|
upload_file = FileService.upload_text(text=str(text), text_name=str(name))
|
|
data_source = {
|
|
"type": "upload_file",
|
|
"info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
|
|
}
|
|
args["data_source"] = data_source
|
|
# validate args
|
|
args["original_document_id"] = str(document_id)
|
|
knowledge_config = KnowledgeConfig(**args)
|
|
DocumentService.document_create_args_validate(knowledge_config)
|
|
|
|
try:
|
|
documents, batch = DocumentService.save_document_with_dataset_id(
|
|
dataset=dataset,
|
|
knowledge_config=knowledge_config,
|
|
account=current_user,
|
|
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
|
created_from="api",
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
document = documents[0]
|
|
|
|
documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
|
|
return documents_and_batch_fields, 200
|
|
|
|
|
|
class DocumentAddByFileApi(DatasetApiResource):
|
|
"""Resource for documents."""
|
|
|
|
@cloud_edition_billing_resource_check("vector_space", "dataset")
|
|
@cloud_edition_billing_resource_check("documents", "dataset")
|
|
def post(self, tenant_id, dataset_id):
|
|
"""Create document by upload file."""
|
|
args = {}
|
|
if "data" in request.form:
|
|
args = json.loads(request.form["data"])
|
|
if "doc_form" not in args:
|
|
args["doc_form"] = "text_model"
|
|
if "doc_language" not in args:
|
|
args["doc_language"] = "English"
|
|
|
|
# Validate metadata if provided
|
|
if args.get("doc_type") or args.get("doc_metadata"):
|
|
if not args.get("doc_type") or not args.get("doc_metadata"):
|
|
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
|
|
|
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
|
raise InvalidMetadataError(
|
|
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
|
)
|
|
|
|
if not isinstance(args["doc_metadata"], dict):
|
|
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
|
|
|
# Validate metadata schema based on doc_type
|
|
if args["doc_type"] != "others":
|
|
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
|
for key, value in args["doc_metadata"].items():
|
|
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
|
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
|
|
|
# set to MetaDataConfig
|
|
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
|
|
|
# get dataset info
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("Dataset is not exist.")
|
|
if not dataset.indexing_technique and not args.get("indexing_technique"):
|
|
raise ValueError("indexing_technique is required.")
|
|
|
|
# save file info
|
|
file = request.files["file"]
|
|
# check file
|
|
if "file" not in request.files:
|
|
raise NoFileUploadedError()
|
|
|
|
if len(request.files) > 1:
|
|
raise TooManyFilesError()
|
|
|
|
if not file.filename:
|
|
raise FilenameNotExistsError
|
|
|
|
upload_file = FileService.upload_file(
|
|
filename=file.filename,
|
|
content=file.read(),
|
|
mimetype=file.mimetype,
|
|
user=current_user,
|
|
source="datasets",
|
|
)
|
|
data_source = {
|
|
"type": "upload_file",
|
|
"info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
|
|
}
|
|
args["data_source"] = data_source
|
|
# validate args
|
|
knowledge_config = KnowledgeConfig(**args)
|
|
DocumentService.document_create_args_validate(knowledge_config)
|
|
|
|
try:
|
|
documents, batch = DocumentService.save_document_with_dataset_id(
|
|
dataset=dataset,
|
|
knowledge_config=knowledge_config,
|
|
account=dataset.created_by_account,
|
|
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
|
created_from="api",
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
document = documents[0]
|
|
documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
|
|
return documents_and_batch_fields, 200
|
|
|
|
|
|
class DocumentUpdateByFileApi(DatasetApiResource):
|
|
"""Resource for update documents."""
|
|
|
|
@cloud_edition_billing_resource_check("vector_space", "dataset")
|
|
def post(self, tenant_id, dataset_id, document_id):
|
|
"""Update document by upload file."""
|
|
args = {}
|
|
if "data" in request.form:
|
|
args = json.loads(request.form["data"])
|
|
if "doc_form" not in args:
|
|
args["doc_form"] = "text_model"
|
|
if "doc_language" not in args:
|
|
args["doc_language"] = "English"
|
|
|
|
# Validate metadata if provided
|
|
if args.get("doc_type") or args.get("doc_metadata"):
|
|
if not args.get("doc_type") or not args.get("doc_metadata"):
|
|
raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")
|
|
|
|
if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
|
|
raise InvalidMetadataError(
|
|
"Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
|
|
)
|
|
|
|
if not isinstance(args["doc_metadata"], dict):
|
|
raise InvalidMetadataError("doc_metadata must be a dictionary")
|
|
|
|
# Validate metadata schema based on doc_type
|
|
if args["doc_type"] != "others":
|
|
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
|
|
for key, value in args["doc_metadata"].items():
|
|
if key in metadata_schema and not isinstance(value, metadata_schema[key]):
|
|
raise InvalidMetadataError(f"Invalid type for metadata field {key}")
|
|
|
|
# set to MetaDataConfig
|
|
args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}
|
|
|
|
# get dataset info
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("Dataset is not exist.")
|
|
if "file" in request.files:
|
|
# save file info
|
|
file = request.files["file"]
|
|
|
|
if len(request.files) > 1:
|
|
raise TooManyFilesError()
|
|
|
|
if not file.filename:
|
|
raise FilenameNotExistsError
|
|
|
|
try:
|
|
upload_file = FileService.upload_file(
|
|
filename=file.filename,
|
|
content=file.read(),
|
|
mimetype=file.mimetype,
|
|
user=current_user,
|
|
source="datasets",
|
|
)
|
|
except services.errors.file.FileTooLargeError as file_too_large_error:
|
|
raise FileTooLargeError(file_too_large_error.description)
|
|
except services.errors.file.UnsupportedFileTypeError:
|
|
raise UnsupportedFileTypeError()
|
|
data_source = {
|
|
"type": "upload_file",
|
|
"info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
|
|
}
|
|
args["data_source"] = data_source
|
|
# validate args
|
|
args["original_document_id"] = str(document_id)
|
|
|
|
knowledge_config = KnowledgeConfig(**args)
|
|
DocumentService.document_create_args_validate(knowledge_config)
|
|
|
|
try:
|
|
documents, batch = DocumentService.save_document_with_dataset_id(
|
|
dataset=dataset,
|
|
knowledge_config=knowledge_config,
|
|
account=dataset.created_by_account,
|
|
dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
|
|
created_from="api",
|
|
)
|
|
except ProviderTokenNotInitError as ex:
|
|
raise ProviderNotInitializeError(ex.description)
|
|
document = documents[0]
|
|
documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
|
|
return documents_and_batch_fields, 200
|
|
|
|
|
|
class DocumentDeleteApi(DatasetApiResource):
|
|
def delete(self, tenant_id, dataset_id, document_id):
|
|
"""Delete document."""
|
|
document_id = str(document_id)
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
|
|
# get dataset info
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
|
|
if not dataset:
|
|
raise ValueError("Dataset is not exist.")
|
|
|
|
document = DocumentService.get_document(dataset.id, document_id)
|
|
|
|
# 404 if document not found
|
|
if document is None:
|
|
raise NotFound("Document Not Exists.")
|
|
|
|
# 403 if document is archived
|
|
if DocumentService.check_archived(document):
|
|
raise ArchivedDocumentImmutableError()
|
|
|
|
try:
|
|
# delete document
|
|
DocumentService.delete_document(document)
|
|
except services.errors.document.DocumentIndexingError:
|
|
raise DocumentIndexingError("Cannot delete document during indexing.")
|
|
|
|
return {"result": "success"}, 200
|
|
|
|
|
|
class DocumentListApi(DatasetApiResource):
|
|
def get(self, tenant_id, dataset_id):
|
|
dataset_id = str(dataset_id)
|
|
tenant_id = str(tenant_id)
|
|
page = request.args.get("page", default=1, type=int)
|
|
limit = request.args.get("limit", default=20, type=int)
|
|
search = request.args.get("keyword", default=None, type=str)
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
raise NotFound("Dataset not found.")
|
|
|
|
query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
|
|
|
|
if search:
|
|
search = f"%{search}%"
|
|
query = query.filter(Document.name.like(search))
|
|
|
|
query = query.order_by(desc(Document.created_at))
|
|
|
|
paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
|
|
documents = paginated_documents.items
|
|
|
|
response = {
|
|
"data": marshal(documents, document_fields),
|
|
"has_more": len(documents) == limit,
|
|
"limit": limit,
|
|
"total": paginated_documents.total,
|
|
"page": page,
|
|
}
|
|
|
|
return response
|
|
|
|
|
|
class DocumentIndexingStatusApi(DatasetApiResource):
|
|
def get(self, tenant_id, dataset_id, batch):
|
|
dataset_id = str(dataset_id)
|
|
batch = str(batch)
|
|
tenant_id = str(tenant_id)
|
|
# get dataset
|
|
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
|
|
if not dataset:
|
|
raise NotFound("Dataset not found.")
|
|
# get documents
|
|
documents = DocumentService.get_batch_documents(dataset_id, batch)
|
|
if not documents:
|
|
raise NotFound("Documents not found.")
|
|
documents_status = []
|
|
for document in documents:
|
|
completed_segments = DocumentSegment.query.filter(
|
|
DocumentSegment.completed_at.isnot(None),
|
|
DocumentSegment.document_id == str(document.id),
|
|
DocumentSegment.status != "re_segment",
|
|
).count()
|
|
total_segments = DocumentSegment.query.filter(
|
|
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
|
|
).count()
|
|
document.completed_segments = completed_segments
|
|
document.total_segments = total_segments
|
|
if document.is_paused:
|
|
document.indexing_status = "paused"
|
|
documents_status.append(marshal(document, document_status_fields))
|
|
data = {"data": documents_status}
|
|
return data
|
|
|
|
|
|
api.add_resource(
|
|
DocumentAddByTextApi,
|
|
"/datasets/<uuid:dataset_id>/document/create_by_text",
|
|
"/datasets/<uuid:dataset_id>/document/create-by-text",
|
|
)
|
|
api.add_resource(
|
|
DocumentAddByFileApi,
|
|
"/datasets/<uuid:dataset_id>/document/create_by_file",
|
|
"/datasets/<uuid:dataset_id>/document/create-by-file",
|
|
)
|
|
api.add_resource(
|
|
DocumentUpdateByTextApi,
|
|
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
|
|
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
|
|
)
|
|
api.add_resource(
|
|
DocumentUpdateByFileApi,
|
|
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
|
|
"/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
|
|
)
|
|
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
|
|
api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
|
|
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
|