dify/api
2024-06-14 22:31:01 +08:00
..
.vscode build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
constants fixed a typo and grammar error in sampled app (#5061) 2024-06-12 18:02:22 +08:00
controllers fix: allow the name and icon of the web app to be set independently of that of the bot itself (#5225) 2024-06-14 22:16:11 +08:00
core feat(Tools): Add Feishu multi-dimensional table operation function (#5213) 2024-06-14 21:19:20 +08:00
docker improvement: introduce Super-Linter actions to check style for shell script, dockerfile and yaml files (#1966) 2024-01-09 10:31:52 +08:00
events fix: initialize site with customized icon and icon_background (#5227) 2024-06-14 22:15:50 +08:00
extensions add aws s3 iam check (#5174) 2024-06-14 15:19:59 +08:00
fields fix: workspace member's last_active should be last_active_time, but not last_login_time (#4906) 2024-06-14 20:49:19 +08:00
libs feat: opportunistic tls flag for smtp (#4794) 2024-05-30 18:56:46 +08:00
migrations build: use Poetry as default build system for dependency installation in CI jobs (#5088) 2024-06-12 14:43:03 +08:00
models feat: new editor user permission profile (#4435) 2024-06-14 20:34:25 +08:00
schedule Feat/dify rag (#2528) 2024-02-22 23:31:57 +08:00
services refactor: Delete the dataset to verify whether it is in use (#5112) 2024-06-14 03:25:38 +08:00
tasks feat: backend model load balancing support (#4927) 2024-06-05 00:13:04 +08:00
templates fix: email template style (#1914) 2024-01-04 16:53:11 +08:00
tests feat: new editor user permission profile (#4435) 2024-06-14 20:34:25 +08:00
.dockerignore build: fix .dockerignore file (#800) 2023-08-11 18:19:44 +08:00
.env.example feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
app.py refactor: config file (#3852) 2024-04-25 22:26:45 +08:00
commands.py feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
config.py feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
Dockerfile improvement: speed up dependency installation in docker image rebuilds by mounting cache layer (#3218) 2024-04-10 22:49:04 +08:00
poetry.lock feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00
README.md Update README.md (#5228) 2024-06-14 22:31:01 +08:00
requirements-dev.txt chore: skip explicit installing jinja2 as testing dependency (#4845) 2024-06-02 09:49:20 +08:00
requirements.txt feat: support tencent vector db (#3568) 2024-06-14 19:25:17 +08:00

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

    Using pip can be found below.

  5. Install dependencies

    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh
    

Usage with pip

Note

In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    If you use Anaconda, create a new environment and activate it

    conda create --name dify python=3.10
    conda activate dify
    
  5. Install dependencies

    pip install -r requirements.txt
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade
    
  7. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  9. If you need to debug local async processing, please start the worker service.

celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh