spdlog/include/spdlog/details/mpmc_blocking_q.h

178 lines
5.1 KiB
C
Raw Normal View History

2019-06-04 05:09:16 +08:00
// Copyright(c) 2015-present, Gabi Melman & spdlog contributors.
2018-05-23 02:59:27 +08:00
// Distributed under the MIT License (http://opensource.org/licenses/MIT)
2019-05-12 01:06:17 +08:00
#pragma once
2018-05-23 02:59:27 +08:00
2018-07-04 05:38:23 +08:00
// multi producer-multi consumer blocking queue.
// enqueue(..) - will block until room found to put the new message.
2018-07-22 04:48:07 +08:00
// enqueue_nowait(..) - will return immediately with false if no room left in
// the queue.
// dequeue_for(..) - will block until the queue is not empty or timeout have
// passed.
2018-07-04 05:38:23 +08:00
#include <atomic>
2018-05-23 02:59:27 +08:00
#include <condition_variable>
#include <mutex>
#include "./circular_q.h"
2023-09-29 05:20:26 +08:00
2018-05-23 02:59:27 +08:00
namespace spdlog {
namespace details {
2023-09-25 07:35:55 +08:00
template <typename T>
class mpmc_blocking_queue {
2018-05-23 02:59:27 +08:00
public:
using item_type = T;
2018-05-26 19:50:42 +08:00
explicit mpmc_blocking_queue(size_t max_items)
2023-09-25 07:35:55 +08:00
: q_(max_items) {}
2018-05-23 02:59:27 +08:00
#ifndef __MINGW32__
2018-05-23 02:59:27 +08:00
// try to enqueue and block if no room left
2023-09-25 07:35:55 +08:00
void enqueue(T &&item) {
{
std::unique_lock<std::mutex> lock(queue_mutex_);
pop_cv_.wait(lock, [this] { return !this->q_.full(); });
q_.push_back(std::move(item));
}
push_cv_.notify_one();
}
// enqueue immediately. overrun oldest message in the queue if no room left.
2023-09-25 07:35:55 +08:00
void enqueue_nowait(T &&item) {
{
std::unique_lock<std::mutex> lock(queue_mutex_);
q_.push_back(std::move(item));
}
push_cv_.notify_one();
}
2023-09-25 07:35:55 +08:00
void enqueue_if_have_room(T &&item) {
bool pushed = false;
{
std::unique_lock<std::mutex> lock(queue_mutex_);
2023-09-25 07:35:55 +08:00
if (!q_.full()) {
q_.push_back(std::move(item));
pushed = true;
}
}
2023-09-25 07:35:55 +08:00
if (pushed) {
push_cv_.notify_one();
2023-09-25 07:35:55 +08:00
} else {
++discard_counter_;
}
}
// dequeue with a timeout.
// Return true, if succeeded dequeue item, false otherwise
2023-09-25 07:35:55 +08:00
bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration) {
{
std::unique_lock<std::mutex> lock(queue_mutex_);
2023-09-25 07:35:55 +08:00
if (!push_cv_.wait_for(lock, wait_duration, [this] { return !this->q_.empty(); })) {
return false;
}
popped_item = std::move(q_.front());
q_.pop_front();
}
pop_cv_.notify_one();
return true;
}
// blocking dequeue without a timeout.
2023-09-25 07:35:55 +08:00
void dequeue(T &popped_item) {
{
std::unique_lock<std::mutex> lock(queue_mutex_);
push_cv_.wait(lock, [this] { return !this->q_.empty(); });
popped_item = std::move(q_.front());
q_.pop_front();
}
pop_cv_.notify_one();
}
#else
// apparently mingw deadlocks if the mutex is released before cv.notify_one(),
// so release the mutex at the very end each function.
2019-09-21 23:16:38 +08:00
// try to enqueue and block if no room left
2023-09-25 07:35:55 +08:00
void enqueue(T &&item) {
std::unique_lock<std::mutex> lock(queue_mutex_);
pop_cv_.wait(lock, [this] { return !this->q_.full(); });
q_.push_back(std::move(item));
push_cv_.notify_one();
2018-05-23 02:59:27 +08:00
}
// enqueue immediately. overrun oldest message in the queue if no room left.
2023-09-25 07:35:55 +08:00
void enqueue_nowait(T &&item) {
std::unique_lock<std::mutex> lock(queue_mutex_);
q_.push_back(std::move(item));
push_cv_.notify_one();
2018-05-23 02:59:27 +08:00
}
2023-09-25 07:35:55 +08:00
void enqueue_if_have_room(T &&item) {
bool pushed = false;
std::unique_lock<std::mutex> lock(queue_mutex_);
2023-09-25 07:35:55 +08:00
if (!q_.full()) {
q_.push_back(std::move(item));
pushed = true;
}
2023-09-25 07:35:55 +08:00
if (pushed) {
push_cv_.notify_one();
2023-09-25 07:35:55 +08:00
} else {
++discard_counter_;
}
}
// dequeue with a timeout.
2018-05-23 02:59:27 +08:00
// Return true, if succeeded dequeue item, false otherwise
2023-09-25 07:35:55 +08:00
bool dequeue_for(T &popped_item, std::chrono::milliseconds wait_duration) {
std::unique_lock<std::mutex> lock(queue_mutex_);
2023-09-25 07:35:55 +08:00
if (!push_cv_.wait_for(lock, wait_duration, [this] { return !this->q_.empty(); })) {
return false;
}
2019-09-17 18:27:42 +08:00
popped_item = std::move(q_.front());
q_.pop_front();
2018-05-23 02:59:27 +08:00
pop_cv_.notify_one();
return true;
}
2018-05-27 07:53:16 +08:00
// blocking dequeue without a timeout.
2023-09-25 07:35:55 +08:00
void dequeue(T &popped_item) {
std::unique_lock<std::mutex> lock(queue_mutex_);
push_cv_.wait(lock, [this] { return !this->q_.empty(); });
popped_item = std::move(q_.front());
q_.pop_front();
pop_cv_.notify_one();
}
#endif
2023-09-25 07:35:55 +08:00
size_t overrun_counter() {
2018-08-14 21:38:35 +08:00
std::unique_lock<std::mutex> lock(queue_mutex_);
return q_.overrun_counter();
}
2023-09-25 07:35:55 +08:00
size_t discard_counter() { return discard_counter_.load(std::memory_order_relaxed); }
2023-09-25 07:35:55 +08:00
size_t size() {
std::unique_lock<std::mutex> lock(queue_mutex_);
return q_.size();
}
2023-09-25 07:35:55 +08:00
void reset_overrun_counter() {
2022-06-09 19:45:40 +08:00
std::unique_lock<std::mutex> lock(queue_mutex_);
q_.reset_overrun_counter();
}
2023-09-25 07:35:55 +08:00
void reset_discard_counter() { discard_counter_.store(0, std::memory_order_relaxed); }
2018-05-23 02:59:27 +08:00
private:
std::mutex queue_mutex_;
std::condition_variable push_cv_;
std::condition_variable pop_cv_;
2018-07-04 05:38:23 +08:00
spdlog::details::circular_q<T> q_;
std::atomic<size_t> discard_counter_{0};
2018-05-23 02:59:27 +08:00
};
2023-09-25 21:40:05 +08:00
} // namespace details
} // namespace spdlog